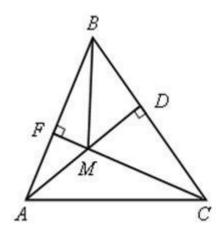
Тема: «Вписанная и описанная окружности»

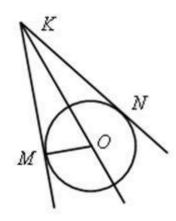
Цели: ввести понятие вписанной окружности и описанного около окружности многоугольника; рассмотреть теорему о том, что в любой треугольник можно вписать окружность.

Ход урока

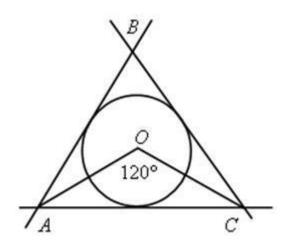
Просмотрите

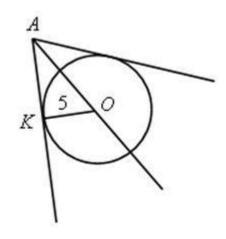


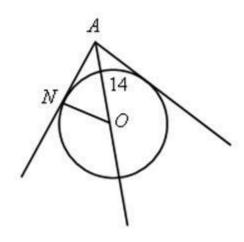
видеоматериал к теме урока


Выполнить устно:

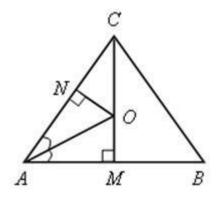
- 1) а) Докажите, что \angle ABM = \angle MCA.
- б) AM = 4, MD = 3, BD = 4.


Найдите расстояние от точки М до стороны АС.


2) Найдите \angle MKN и расстояние MN, если OM = $\sqrt{3}$, KM = 3.


3) Найдите углы \triangle ABC, если \angle OAC = 20° и \angle AOC = 120°.

- 4) стороны угла А касаются окружности радиуса г с центром О.
- а) Найдите OA, если r = 5 см, $\angle A = 60^{\circ}$.



б) Найдите r, если OA = 14 дм, $\angle A = 90^{\circ}$.

II. Закрепление изученного материала.

Запишите в тетрадь оба решения данной задачи.

Решение

1) Центр О вписанной окружности искомого радиуса r лежит на биссектрисе CM треугольника ABC, а так как CM $\stackrel{\bot}{=}$ AB, то вписанная окружность касается отрезка AB в точке M. Поэтому OM = r.

Далее рассматриваем различные способы решения этой задачи:

I способ.

$$\frac{1}{1. \text{ AM}} = \frac{1}{2} \text{ AB} = 5 \text{ cm}.$$

2. М и N- точки касания, следовательно, AN=AM=5 см, откуда CN=AC-AN=8 см.

3. B
$$\Delta$$
 ACM : CM = $\sqrt{AC^2 - AM^2} = 12$ (cm).

4. В
$$\Delta$$
 CON: CO2 = CN2 + ON2, то есть $(12 - r)2 = 82 + r2$

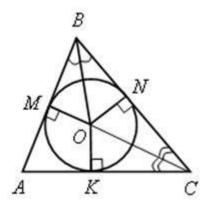
$$144 - 24r + r2 = 64 + r2$$
.

$$r=3\frac{1}{3}$$

$$OM = ON = 3 \frac{1}{3} c_{M}.$$

II способ.

1. B
$$\triangle$$
 ACM : AM = $\frac{1}{2}$ AB = 5 cm.


$$CM = \sqrt{AC^2 - AM^2} = 12 (cm).$$

2. Отрезок АО – биссектриса треугольника АМС (так как О – центр вписанной

окружности), поэтому
$$\frac{OM}{OC} = \frac{AM}{AC}$$
 или $\frac{r}{12-r} = \frac{5}{13}$; $13r = 60-5r$, $r = 3$.

$$OM = ON = 3 \frac{1}{3} c_{M}.$$

IV. Итоги урока.

- 1) Центр вписанной в треугольник окружности в точке пересечения биссектрис;
- 2) OM = ON = OK радиусы вписанной окружности;
- 3) окружность единственная для данного треугольника.

Домашнее задание:

Разобрать материал в § 4, на стр. 181-185

Письменно выполните № 689,692 на стр. 185.

Работы присылать на почту учителя nastya-poluban@yandex.ru или в сообщения в вк.