AP Calculus BC | STRAND | UNIT TITLE/REPORT CARD LANGUAGE | |-----------------------|---| | POWER OBJECTIVE #1 | Strategies for Integration and Differential Equations | | | | | SUPPORTING INDICATORS | Enduring Understanding 2.3: The derivative has multiple interpretations and applications including those that involve instantaneous rates of change. | | | Learning Objective 2.3E: Verify solutions to differential equations. | | | Essential Knowledge 2.3E1: Solutions to differential equations are functions or
families of functions. | | | Essential Knowledge 2.3E2: Derivatives can be used to verify that a function is a
solution to a given differential equation. | | | Learning Objective 2.3F: Estimate solutions to differential equations | | | Essential Knowledge 2.3F2: For differential equations, Euler's method provides a procedure for approximating a solution or a point on a solution curve. | | | Enduring Understanding 3.3: The Fundamental Theorem of Calculus, which has two distinct formulations, connects differentiation and integration. | | | Learning Objective 3.3B(a): Calculate antiderivatives. | | | Learning Objective 3.3B(b): Evaluate definite integrals. | | | Essential Knowledge 3.3B5: Techniques for finding antiderivatives include | | | algebraic manipulation such as long division and completing the square, | | | substitution of variables, integration by parts, and nonrepeating linear partial fractions. | <u>Enduring Understanding 3.5</u>: Antidifferentiation is an underlying concept involved in solving separable differentiable equations. Solving separable differential equations involves determining a function or relation given its rate of change. - Learning Objective 3.5A: Analyze differential equations to obtain general and specific solutions. - Essential Knowledge 3.5A1: Antidifferentiation can be used to find specific solutions to differential equations with given initial conditions, including applications to motion along a line, exponential growth and decay, and logistic growth. - Essential Knowledge 3.5A2: Some differential equations can be solved by separation of variables. - Essential Knowledge 3.5A3: Solutions to differential equations may be subject to domain restrictions. - Essential Knowledge 3.5A4: The function F defined by $F(x) = c + \int_a^x f(t)dt$ is a general solution to the differential equation $\frac{dy}{dx} = f(x)$, and $F(x) = y_0 + \int_a^x f(t)dt$ is a particular solution to the differential equation $\frac{dy}{dx} = f(x)$ satisfying $F(a) = y_0$. - Learning Objective 3.5B: Interpret, create, and solve differential equations from problems in context. - Essential Knowledge 3.5B1: The model for exponential growth and decay that arises from the statement "The rate of change of a quantity is proportional to the size of the quantity" is dy/dt = ky. | | The model for logistic growth that arises from the statement "The rate of change of a quantity is jointly proportional to the size of the quantity and the difference between the quantity and the carrying capacity" is \(\frac{dy}{dt} = ky(a-y)\). | |-----------------------|---| | POWER OBJECTIVE #2 | Applications of Integration | | SUPPORTING INDICATORS | Enduring Understanding 3.2: The definite integral of a function over an interval is the limit of a Riemann sum over the interval and can be calculated using a variety of strategies. | | | Learning Objective 3.2D: Evaluate an improper integral or show that an improper
integral diverges. | | | Essential Knowledge 3.2D1: An improper integral is an integral that has one or
both limits infinite or has an integrand that is unbounded in the interval of
integration. | | | Essential Knowledge 3.2D2: Improper integrals can be determined using limits of
definite integrals. | | | Enduring Understanding 3.4: The definite integral of a function over an interval is a mathematical tool with many interpretations and applications involving accumulation. | | | Learning Objective 3.4D: Apply definite integrals to problems involving area and
volume. | | | Essential Knowledge 3.4D3: The length of a planar curve defined by a function or
by a parametrically defined curve can be calculated using a definite integral. | | | | | | | | | | | POWER OBJECTIVE #3 | Curves in Parametric, Vector, and Polar Form | |-----------------------|---| | SUPPORTING INDICATORS | Enduring Understanding 2.1: The derivative of a function is defined as the limit of a difference quotient and can be determined using a variety of strategies. | | | Learning Objective 2.1C: Calculate derivatives. Essential Knowledge 2.1C7: Methods for calculating derivatives of real-valued functions can be extended to vector-valued functions, parametric functions, and functions in polar coordinates. | | | Enduring Understanding 2.2: A function's derivative, which is itself a function, can be used to understand the behavior of a function. | | | Learning Objective 2.2A: Use the derivatives to analyze properties of a function. Essential Knowledge 2.2A4: For a curve given by a polar equation r = f(θ), derivatives of r, x, and y with respect to θ and first and second derivatives of y with respect to x can provide information about the curve. | | | Enduring Understanding 2.3: The derivative has multiple interpretations and applications including those that involve instantaneous rates of change. | | | Learning Objective 2.3C: Solve problems involving related rates, optimization, rectilinear motion, and planar motion. Essential Knowledge 2.3C4: Derivatives can be used to determine velocity, speed, and acceleration for a particle moving along curves given by parametric or vector-valued functions. | | | Enduring Understanding 3.4: The definite integral of a function over an interval is a mathematical tool with many interpretations and applications involving accumulation. | | | Learning Objective 3.4C: Apply definite integrals to problem involving motion. Essential Knowledge 3.4C2: The definite integral can be used to determine displacement, distance, and position of a particle moving along a curve given by parametric or vector-valued functions. | |-----------------------|--| | POWER OBJECTIVE #4 | Infinite Sequences and Series | | SUPPORTING INDICATORS | Essential Knowledge 4.1A3: Common series of numbers include geometric series, the harmonic series, and p-series. Essential Knowledge 4.1A4: A series may be absolutely convergent, conditionally convergent, or divergent. Essential Knowledge 4.1A5: If a series converges absolutely, then it converges. Essential Knowledge 4.1A6: In addition to examining the limit of the sequence of partial sums of the series, methods for determining whether a series of numbers converges or diverges are nth term test, the comparison test, the limit comparison test, the integral test, the ratio test, and the alternating series test. Learning Objective 4.1B: Determine or estimate the sum of a series. Essential Knowledge 4.1B1: If a is a real number and r is a real number such that r < 1, then the geometric series ∑_{n=0}[∞] arⁿ = a/(1-r). Essential Knowledge 4.1B2: If an alternating series converges by the alternating series test, then the alternating series error bound can be used to estimate how close a partial sum is to the value of the infinite series. Essential Knowledge 4.1B3: If a series converges absolutely, then any series obtained from it by regrouping or rearranging the terms has the same value. | | | Enduring Understanding 4.2: A function can be represented by an associated power series over the interval of convergence for the power series. Learning Objective 4.2C: Determine the radius and interval of convergence of a power series. Essential Knowledge 4.2C1: If a power series converges, it either converges at a single point or has an interval of convergence. Essential Knowledge 4.2C2: The ratio test can be used to determine the radius of convergence of a power series. | |-----------------------|--| | POWER OBJECTIVE #5 | Taylor and Maclaurin Series | | SUPPORTING INDICATORS | Enduring Understanding 4.2: A function can be represented by an associated power series over the interval of convergence for the power series. Learning Objective 4.2A: Construct and use Taylor polynomials. Essential Knowledge 4.2A1: The coefficient of the mth-degree term in a Taylor polynomial centered at x = a for the function f is f(n)(a)/n! Essential Knowledge 4.2A2: Taylor polynomials for a function f centered at x = a can be used to approximate function values of f near x = a. Essential Knowledge 4.2A3: In many cases, as the degree of a Taylor polynomial increases, the mth-degree polynomial will converge to the original function over some interval. Essential Knowledge 4.2A4: The Lagrange error bound can be used to bound the error of a Taylor polynomial approximation to a function. Essential Knowledge 4.2A5: In some situations where the signs of a Taylor polynomial are alternating, the alternating series error bound can be used to bound the error of a Taylor polynomial approximation to the function. | | | Learning Objective 4.2B: Write a power series representing a given function. | |-----------------------|--| | | • Essential Knowledge 4.2B1: A power series is a series of the form $\sum_{n=0}^{\infty} a_n (x-r)^n$ | | | where n is a non-negative integer, $\{a_n\}$ is a sequence of real numbers, and r is a | | | real number. | | | Essential Knowledge 4.2B2: The Maclaurin series for sin(x), cos(x), and e^x | | | provide the foundation for constructing the Maclaurin series for other functions. | | | • Essential Knowledge 4.2B3: The Maclaurin series for $\frac{1}{1-x}$ is a geometric series. | | | Essential Knowledge 4.2B4: A Taylor polynomial for f(x) is a partial sum of the | | | Taylor series for $f(x)$. | | | Essential Knowledge 4.2B5: A power series for a given function can be derived
by various methods (e.g., algebraic processes, substitutions, using properties of | | | geometric series, and operations on known series such as term-by-term integration or term-by-term differentiation. | | | Learning Objective 4.2C: Determine the radius and interval of convergence of a power
series. | | | Essential Knowledge 4.2C3: If a power series has a positive radius of | | | convergence, then the power series is the Taylor series of the function to which it converges over the open interval. | | | Essential Knowledge 4.2C4: The radius of convergence of a power series | | | obtained by term-by-term differentiation or term-by-term integration is the same | | | as the radius of convergence of the original power series. | | POWER OBJECTIVE #6 | AP Calculus AB Review | | SUPPORTING INDICATORS | The AP Calculus BC exam consists of both AP Calculus AB and BC content. Therefore, a significant amount of time is spent reviewing these concepts. Any AB review will be attached to this Power Objective. | | | <u> </u> |