

INTEGRANTES DEL

REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN U.E.P. LUISA CÁCERES DE ARISMENDI TURMERO - EDO. ARAGUA

PRACTICA DE LABORATORIO #3.- MOVIMIENTO DE PROYECTILES

<u>FÍSICA 4º AÑO</u> I MOMENTO 2025-2026

EQUIPO:						
•	TÍTULO: El Ángulo Perfecto: Explorando el Alcance en el Tiro Parabólico					
•	OBJE	CTIVO: Investigar cómo el ángulo de lanzamiento afecta el alcance horizontal de un proyectil y				
	detern	ninar experimentalmente el ángulo que proporciona el alcance máximo.				
•	TIEM	TIEMPO ESTIMADO: 60min → 15 min. montaje, 35 min. experimentación y registro, 10 min.				
	Anális	sis				
•	MATERIALES NECESARIOS: Lanzador de proyectiles de resorte simple puede ser una pinza de					
	ropa, ı	una catapulta de juguete, transportador para medir el ángulo, canica o bola de papel compacta				
	(proye	ectil), cinta métrica, papel carbón o tiza para marcar el impacto.				
•	CON	CEPTOS CLAVES: Tiro Parabólico, Alcance Máximo, Ángulo de Lanzamiento (θ), Simetría				
	de la I	Parábola				
	PRE-	LABORATORIO:				
	o	¿Cómo es la figura de una parabola?				
	0	¿En la vida cotidiana como evidencias un movimiento parabolico?				

LABORATORIO:

- o Materiales:
 - Lanzador de proyectiles de resorte simple puede ser una pinza de ropa
 - Una catapulta de juguete
 - Transportador para medir el ángulo
 - Canica o bola de papel compacta (proyectil)
 - Cinta métrica
 - Papel carbón o tiza para marcar el impacto

1.- Montaje del Modelo:

- a) Instale el lanzador de manera que se pueda variar y medir el ángulo de lanzamiento
- (θ) con el transportador. Asegúrese de que la fuerza de lanzamiento) sea constante para todas las pruebas
- b) Identifique el punto de lanzamiento y la superficie de impacto.

2.- Experimentación y Medición del Alcance:

- a) Pruebe varios ángulos 15°, 30°, 45°, 60°, 75°
- b) Para cada ángulo, lance el proyectil 3 veces.
- c) Mida la distancia horizontal (alcance, x) desde el punto de lanzamiento hasta el impacto.
- d) Calcule el alcance promedio (x) para cada ángulo..

Angulo (θ)	Alcance (x ₁)	Alcance (x ₂)	Alcance (x ₃)	Alcance promedio

• POST - LABORATORIO:

- 1.- <u>Identificación del Alcance Máximo:</u> Identifique en la tabla qué ángulo produjo el mayor alcance promedio.
- 2.- Análisis de Simetría: Realice una única prueba 90° ¿Qué observas?

INDICADORES:

• Laboratorio:

- Realiza las investigaciones asignadas de Pre laboratorio (3pts)
- Cumple responsablemente con traer los materiales necesarios para las experiencias. (2pts)
- Realiza correctamente las actividades propias del laboratorio (3 pts.)
- Cumple las indicaciones dadas en clase para la elaboración del montaje. (3pts)
- Realiza las actividades de Post laboratorio correctamente. (3pts)
- Responde correctamente las preguntas que indica de manera oral el docente (2pts)
- APCEC (4pts)