

You are welcome to review this
document, but it has been replaced by

these instructions:
https://docs.google.com/document/d/1PwGR-QbVKhABIwpYro97DFe0KQkfG8MqP_K6mHjdYL
I/edit?usp=sharing

CSSE 280: Deploying your web app to

Heroku and mLab
Objectives
You will be able to

●​ Deploy your server API application to Heroku - https://www.heroku.com
●​ Deploy your database to mLab - https://mlab.com/
●​ Connect your server back-end application to your mLab hosted database

Table of Contents
Introduction

How to submit your work

Getting our database live on mLab
Setting up mLab manually

Migrating your local database to mLab
Creating a temp directory
Dump the data from your local database
Restore data to remote database
Testing the remote database

Getting Heroku setup
Making a Heroku ready app
Adding an engines section to manifest
Creating a Procfile
Testing app locally with heroku local (May not work on Windows)

Pushing the site live using Git
Storing the app in Git

https://docs.google.com/document/d/1PwGR-QbVKhABIwpYro97DFe0KQkfG8MqP_K6mHjdYLI/edit?usp=sharing
https://docs.google.com/document/d/1PwGR-QbVKhABIwpYro97DFe0KQkfG8MqP_K6mHjdYLI/edit?usp=sharing
https://www.heroku.com
https://mlab.com/

Logging in and Creating the Heroku application
Deploying the application to Heroku
Updating and redeploying your Heroku application
Updating Heroku configuration with mLab Database connection string

Setting the database URI based on the environment
Testing before launching (May not work on Windows)
Launching on Heroku

Challenge Exercise (optional)

Troubleshooting
Problem: Application Error
Resolution to Application Error
Problem setting MLAB_URI
Resolution to setting MLAB_URI
Problem with pushing app to heroku
Resolution to pushing app to heroku
Problem with Windows console
Resolution to Windows console

Introduction
A concern for Node.js applications developers is deploying their applications to a production
environment. Heroku is one of the cloud platform as a service (PaaS) providers that helps solve
this problem. Heroku allows you to deploy your Node.js application onto the real Internet for
free. No more pointing your browser to http://localhost:3000.

How to submit your work
This will be graded as a homework assignment. Be sure to turn in the herokuapp.com URL
for your back-end API server application in the Web App Deployment Submission spreadsheet.

Getting our database live on mLab
If your application is live on the Internet, it is pointless having the database on your local
machine. Your database also needs to be externally accessible. In this section you’re going to
push your database into a live environment and update your REST API to use the published
database from the published site.

Setting up mLab manually

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 2

http://localhost:3000
https://docs.google.com/spreadsheets/d/1BGATT79Y-gkGbBdNX-YwSVD53hzZESoBcuGSkcGm9ec/edit?usp=sharing

This is the preferred approach since using an add-on from Heroku approach would require you
to submit your credit card.

http://docs.mlab.com/ has provided a Quick-Start guide to mLab, but the most important steps
are highlighted below.

1.​ Sign up for a free account from https://mlab.com/
2.​ Click on the Create new button under MongoDB Deployments to create a new database
3.​ Choose Google Cloud Platform or Microsoft Azure as your Cloud Provider

a.​ Do not use Amazon web services, use a different one (Google or Azure)
4.​ Choose Sandbox, which is free, as your Plan Type

a.​ Click the Continue button at the bottom of the page.
5.​ Choose a Region and click on the Continue button at the bottom of the page
6.​ Enter database name contactsappdb-<Rose-username> in the appropriate text field

then click Continue
7.​ Verify your Order Confirmation then click the Submit Order button at the bottom of the

page.
8.​ Click on the Home link (top left), then click on the name of the database below the

MongoDB Deployments heading and Deployment Utility subheading.
9.​ Add at least one user by clicking the Users tab

a.​ Click the Add database user button.
b.​ Enter the new user credentials, then click Create.

Add to Whitelist

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 3

http://docs.mlab.com/
https://mlab.com/

10.​Get the database URI (connection string). This step is very important.
a.​ Click the database name to get the database URI.
b.​ It should look something like mongodb://dbuser:dbpassword@dsyour_

port_number.mlab.com:your_port_number/contactsappdb-<Rose-usernam
e>

c.​ Most of the parts will be different for you and you will have to swap out the
username and password with what you specified in step 9b.

d.​ To connect using the mongo shell enter the following at a terminal

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 4

​

> mongo
dsyour_port_number.mlab.com:your_port_number/conmongtactsappdb-<Rose-us
ername> -u dbuser -p dbpassword​
Again, swap out the username and password with what you specified in step 9b.

You should see a confirmation that you are connected to the database. E.g.,​
​
​ MongoDB shell version: 3.6.8

connecting to:
ds031257.mlab.com:31257/contactsappdb-<Rose-username>

--Note: the above may not work with git bash if you had problems with your mongodb
installation. In this case you may want to do this in PowerShell.

You should now be able to interact (on a limited basis) with the database via the mongo
shell. You might not be able to do much in the shell for security reasons. You might want
to explore the website instead.

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 5

Migrating your local database to mLab
Now that you have set up a remote database and know all the details for connecting to it, you
can migrate your local database to it by following the steps below.

1.​ Create a temp directory to store your local database data dump
2.​ Dump the data from your local database in that directory
3.​ Restore the data to the remote database
4.​ Test the remote database

These steps can be executed from a bash-enabled terminal window (e.g., GitBash on
Windows).

Creating a temp directory
> mkdir -p tmp/mongodump

Dump the data from your local database
You should make sure that mongod is running in a different terminal when you execute this
command.

> mongodump -h localhost:27017 -d contactsappdb -o tmp/mongodump

-h - The hostname and port number
-d - the local database name
-o - the destination directory for the data dump

https://docs.mongodb.com/manual/reference/program/mongodump/ lists additional parameters.

Restore data to remote database
> mongorestore -h ds031257.mlab.com:31257 -d contactsappdb-<Rose-username> -u
dbuser -p pword tmp/mongodump/contactsappdb

-h - remote hostname and port number
-d - remote database name (how you want to name the db on mlab.com)
-u - username for remote database
-p - password for remote database
path to the dump directory and database name

These parameters will all be different for you. Replace them with the values from your
connection string.

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 6

https://docs.mongodb.com/manual/reference/program/mongodump/

https://docs.mongodb.com/manual/reference/program/mongorestore/ => additional parameters.

Testing the remote database
> mongo ds031257.mlab.com:31257/contactsappdb-<Rose-username> -u dbuser -p
dbpassword

Again, these values will be different for you. Don’t forget to swap out the username and
password with what you specified above.

You should see confirmation in the terminal window that looks like this:
MongoDB shell version: 3.6.8
connecting to: ds031257.mlab.com:31257/contactsappdb-<Rose-username>

You can run a few simple find() queries on the remote database to verify that data did get
transferred.

Getting Heroku setup
Before you can use Heroku, you need to sign up for a free account at https://www.heroku.com/.
Choose Node.js as your Primary Development Language.

Next, you’ll want to install the Heroku Command Line Interface (CLI) (used to be called the
Heroku Toolbelt) by following installation instructions for your platform from
https://devcenter.heroku.com/articles/heroku-command-line. This will install ​

1.​ Heroku client: a CLI for managing Heroku apps. You’ll use it to manage your Express
applications.

2.​ Forego: Another CLI that you’ll use to define how you want your applications to run.
3.​ Git: a version control system that you already have installed.

Note: For windows users, will need to add the bin directory to your system environment path.
System > Advanced System Settings > Environment Variables > Path > Edit > New , Then copy
your file location to heroku’s bin directory (default is C:\Program Files\Heroku\bin).

Once you have everything set up, we can continue and get your app ready to go live.

Making a Heroku ready app
Heroku can run applications on all different types of codebases, so we need to tell Heroku what
our application is running. We need to tell it that we are running a Node.js application and are

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 7

https://docs.mongodb.com/manual/reference/program/mongorestore/
https://www.heroku.com/
https://devcenter.heroku.com/articles/heroku-command-line

using npm as the Node.js package manager. The version numbers for these are very important
since we want to ensure that the production setup is the same as the development setup. To
get the version numbers for these, run the following commands in a terminal. We will use > to
indicate the prompt.

TO MINIMIZE ISSUES ON WINDOWS SYSTEMS, ALL REMAINING TERMINAL COMMANDS
SHOULD BE RUN IN POWERSHELL.

> node -v
> npm -v

From the terminal, change directory (cd) to the root directory of your completed back-end
API server application (contacts-app-backend-with-middleware).

Adding an engines section to manifest
Open the package.json file in VS Code or your favorite editor and add the following section.

"engines": {
​ "node": "~8.11.0",
​ "npm": "5.5.0"
},​

--Note, you may need to retype the “” as copy/paste can be weird.

When pushed up to Heroku, this will tell Heroku that our application uses the latest patch
version of Node.js, 8.11, and the latest patch version of npm, 5.6.

See https://devcenter.heroku.com/articles/nodejs-support for the versions of Node.js and npm
that Heroku supports. Make sure you are specifying from among these versions.

We should start our application on const port = process.env.PORT || 3000 (in app.js)
because Heroku stores a port number for the application in this environment variable. Note:
You can use 3000 or any port number that you wish. The point to note here is that Heroku may
opt to provide you a port number that is different from the one you choose and will default to
using that instead.

Change your port number in app.js in your backend to:

const port = process.env.PORT || 3000

Creating a Procfile

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 8

https://devcenter.heroku.com/articles/nodejs-support

The package.json manifest tells Heroku that the application is a Node.js application, but it does
not tell Heroku how to start it. To tell Heroku how to start our application, we need to define a
Procfile. This will declare the process types of our application and the commands used to start
them.

In the backend directory of the application, create a file called Procfile (this is case sensitive
and has no extension). Type the following line in the Procfile.

web: node app.js

OR

web: node ./bin/www // if this is where your app starts

When pushed to Heroku, this file tells Heroku that the application needs a web process and
that it should run node app.js OR node ./bin/www.

Testing app locally with heroku local (May not work on Windows)
We can use heroku local to verify our setup and run our application locally before pushing the
application to Heroku. This part of the lab may not work on WIndows.

If the application is currently running, stop it by pressing Ctrl-C in the terminal window that’s
running the process. Now, in the terminal window, enter the following command.

> heroku local

If all the above steps went well, this will run the application locally on possibly a different port
(might be 5000 instead of 3000). You should see confirmation of that in the terminal. Now open
your browser and enter the address http://localhost:5000 (or the confirmed port number) in the
address bar to verify that the app still works.

Note: If nothing happens or it errors out, it’s not a huge problem; move to the next step.

Pushing the site live using Git
Heroku uses Git as the deployment method. If you need a quick review, Git Tutorial - Try Git at
https://try.github.io is an excellent reference.

Storing the app in Git
The first action toward pushing your site live using Git is to store the application in Git, on your

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 9

http://localhost:5000
https://try.github.io

local machine. This can be done as follows:

1.​ Add a .gitignore file that tells git to ignore certain files and directories. Create a file in
the application directory (e,g., contacts-app-backend-with-middleware) called
.gitignore (Note the dot at the start of the file name and the fact that the file has no
extension) and add the following content to the file.
node_modules

2.​ Initialize the application folder as a Git repository by using the following terminal

command:
> git init

3.​ Tell Git which files to add to the repository by using the following command:

> git add .

4.​ Commit these changes to the repository using the following command:
> git commit -m “Initial commit”

These commands together will create a local repository containing the entire codebase for the
application.

Logging in and Creating the Heroku application
This step will create an application on Heroku, as a remote Git repository of your local
repository. From the terminal, enter the following commands, in order, responding to prompts as
needed. This will log you into Heroku from the CLI and create the Heroku application. In the
commands below, replace username with your Rose-Hulman network username or use a
totally different unique name for your app.

> heroku login
> heroku create contacts-app-api-username

If you do not include a name for your app, Heroku will assign your app some arbitrary name.
You should see a confirmation of that in the terminal. Now login to your Heroku account in a
browser to see that the application exists. Click on the app in the browser, then on the Settings
tab to see the Heroku Git URL for your app; copy it. Now add the git remote so you can work
toward posting your app to Heroku.

> git remote add heroku PASTE_THE _HEROKU_GIT_URL_HERE

If you get an error from this command saying “remote heroku already exists” it is not an

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 10

https://id.heroku.com/login
https://id.heroku.com/login

error. It just means that the remote was already added.

> git remote -v

You should see the your heroku remote with url(s) listed.

Deploying the application to Heroku
Now, tell your newly created Heroku app that it is a production Node.js environment.You do so
by setting the NODE_ENV environment variable on the Heroku servers. This can be
accomplished by entering the following command in the terminal.

> heroku config:set NODE_ENV=production

 Your application is still stored in the local Git repository and the remote repository you’ve
created on Heroku is empty. So you need to push the content of your local repository to the
heroku remote repository by entering the following command in the terminal.

> git push heroku master

This will log a lot of messages to the console as it goes through the process, eventually ending
up with a confirmation that the application has been deployed to Heroku. E.g.,

https://contacts-app-api-username.herokuapp.com deployed on Heroku

The next step is to tell Heroku to run your app with one process, so it will actually run on a real
computer. This can be accomplished by running the following in the terminal.

> heroku ps:scale web=1

A confirmation will display in the console and your application will be live on the Internet.

By the way, you can run the following command to see your environment variables on heroku:

> heroku config

To view your application on a live URL, enter the following command in the terminal.

> heroku open

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 11

This should launch the application in your default web browser. But wait! There may be a
problem. It needs to access your database, which is only accessible from your local machine.
The section Getting our database live on mLab addresses this problem.

Updating and redeploying your Heroku application
Now that your Heroku application is setup, updating and redeploying it is easy. Every time you
want to push some new changes through, you need to enter the following terminal commands
from the root directory of the application.

> git status
> git add .
> git commit -m “commit message goes here”
> git push heroku master

Updating Heroku configuration with mLab Database connection string
Once you have your full connection string for your mLab database, you should save it as part of
your Heroku configuration. In the root directory of your API application, enter the following
commands in a terminal window.​

> heroku login // make sure you are still logged in
> heroku config:set MLAB_URI=your_db_uri​
​
Replace your_db_uri with your full connection string, including the mongodb:// protocol.

The last command should look something like this:​

> heroku config:set MLAB_URI=mongodb://dbuser:dbpassword@dsyour_
port_number.mlab.com:your_port_number/contactsappdb-<Rose-username>

Replace the appropriate parts of the URI as needed. The best way to get the correct URI is to
login to https://mlab.com, click on your specific MongoDB Deployment (database), copy and
paste your MongoDB URI, replacing dbuser and dbpassword with your mLab credentials.

Recall that you run the following command to see your heroku environment variables:

> heroku config

Setting the database URI based on the environment
The database connection for the back-end API application is held in models/db.js. The
connection portion of the this file currently looks like the code snippet below.

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 12

https://mlab.com

const dbURI = `mongodb://${server}/${database}`;

...

mongoose.connect(dbURI, options).then().catch(); // with options values

We need to update this to use the connection string set in the heroku environment variables.
The code snippet for the first line above should be replaced as follows:

let dbURI = `mongodb://${server}/${database}`;
if (process.env.NODE_ENV === 'production') {
 dbURI = process.env.MLAB_URI;
}

Testing before launching (May not work on Windows)
In the root directory of your back-end API application, enter the following command in a
terminal window to test the changes locally before launching on Heroku.

Note: This may not work on Windows because Windows does not allow you to declare an
environment variable from the terminal this way. If you get an error, it is okay to skip this step.

> MLAB_URI=your_db_uri
> NODE_ENV=production

Don’t forget to replace your_db_uri with your actual MongoDB URI on mLab.

You should see a confirmation that looks something like below:
> node app.js

listening on port 3000
Mongoose connected to your_db_uri

Launching on Heroku
If your local tests are successful and you can connect to your remote database by temporarily
running your application in production mode, then you are ready to push your changes to
Heroku. Follow instructions from Updating and redeploying your Heroku application to do so.
Don’t forget to run ​

> git push heroku master.

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 13

You can run the following command in the terminal to look at the Heroku logs and verify that
your application is connected to your remote database. If you see errors, address them and
update/redeploy your Heroku application.

 > heroku logs

Your Heroku logs are also available from the Heroku’s website. When you login and access your
app, click on the More dropdown list and select the View Logs option.

Challenge Exercise (optional)
Now that you know how to deploy a frontend application to Firebase, a database to mLab, and a
backend server application to Heroku, do the following with your contacts-app-front application:

●​ Make it use your Heroku deployed API instead of the localhost version of the API
●​ Deploy it to Firebase -- review these instructions
●​ Enter the URL of the frontend in the Web App Deployment Submission spreadsheet

Troubleshooting

Problem: Application Error
My app is not loading in the browser, is taking forever to load, or reporting Application Error.

Resolution to Application Error
Here are some of the things you can do to address this.

> heroku login // login to heroku
> heroku config // will spit out the values of NODE_ENV (and MLAB_URI for backend)

If any variable (NODE_ENV or MLAB_URI) is incorrect, set it to its expected values.

> heroku logs // gives a console log of the activities of the application and reports errors

If you see errors in the log, address them then update/redeploy your Heroku application. One
possible error is that mongoose or another package is missing. To install mongoose and
update your package.json manifest run the following command:

> npm install mongoose --save

Problem setting MLAB_URI
I see errors in the console when setting the MLAB_URI variable.

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 14

https://id.heroku.com/login
https://docs.google.com/document/d/15ImpgY8bUtnZxpdOyVn_D3SjfkesI99SvDCVi2oSalE/edit#heading=h.x3rlvqrqbxjy
https://docs.google.com/spreadsheets/d/1BGATT79Y-gkGbBdNX-YwSVD53hzZESoBcuGSkcGm9ec/edit?usp=sharing

Resolution to setting MLAB_URI
Make sure there is no ! character in the username or password. If you included it in your dbuser
credentials, correct that from https://mlab.com.

Problem with pushing app to heroku
I have trouble pushing my app to heroku master

Resolution to pushing app to heroku
Here are a few things you can do to address this.

> git status // status of your repository

If there are files that are not committed, update/redeploy your Heroku application. Do all but the
last step (git push heroku master).
> git remote -v // shows remote repositories that the app is connected with

If you don’t see a confirmation similar to the following,

heroku​https://git.heroku.com/your_app_name.git (fetch)
heroku​https://git.heroku.com/your_app_name.git (push)

find the name of your app by login into https://www.heroku.com. Copy the name of your app (not
the full URL) and run the following command at the terminal.

> git remote add heroku https://git.heroku.com/your_app_name.git // add missing remote
> git remote -v // confirm remote is added

If you get an error because the remote is already added, this is because you only need to add
the remote once. If you wish to change the remote, here is how you do so.

> git remote set-url heroku https://git.heroku.com/your_correct_app_name.git
> git remote -v // confirm remote is added

> git push heroku master // now push your app to heroku and heroku will deploy it for you.

Problem with Windows console
Git-bash or Command Prompt is giving me problem interacting with my app on Windows.

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 15

https://mlab.com
https://www.heroku.com

Resolution to Windows console
Consider installing the ConEmu (https://sourceforge.net/projects/conemu/) or cmder terminal
emulator (http://cmder.net/). You might want to download and install the full as opposed to the
mini version of the application. Use this as your terminal instead.

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 16

https://sourceforge.net/projects/conemu/
http://cmder.net/

	You are welcome to review this document, but it has been replaced by these instructions:
	
	CSSE 280: Deploying your web app to Heroku and mLab
	Introduction
	How to submit your work
	Getting our database live on mLab
	Setting up mLab manually

	Migrating your local database to mLab
	Creating a temp directory
	Dump the data from your local database
	Restore data to remote database
	Testing the remote database

	Getting Heroku setup
	Making a Heroku ready app
	Adding an engines section to manifest
	Creating a Procfile
	Testing app locally with heroku local (May not work on Windows)

	Pushing the site live using Git
	Storing the app in Git
	Logging in and Creating the Heroku application
	
	Deploying the application to Heroku
	Updating and redeploying your Heroku application
	Updating Heroku configuration with mLab Database connection string
	Setting the database URI based on the environment
	Testing before launching (May not work on Windows)
	Launching on Heroku

	Challenge Exercise (optional)
	Troubleshooting
	Problem: Application Error
	Resolution to Application Error
	Problem setting MLAB_URI
	
	Resolution to setting MLAB_URI
	Problem with pushing app to heroku
	Resolution to pushing app to heroku
	Problem with Windows console
	Resolution to Windows console

