

​
XEP-DELIVERY: Reliable Message Delivery

1. Introduction

1.1. Goals

1.2. Glossary

1.3. Requirements

2. Dependencies

2.1 Unique and Stable Stanza IDs

2.2 Message archive

2.3. Message Carbons

2.4. Session resumption

3. Business rules

3.1. Message IDs

3.2. Delivery receipts

3.3. Message archiving

3.4. Resending

3.5. Error handling

3.6 Message delivery to remote entity

3.7 Resending to remote entity

XEP-DELIVERY: Reliable Message Delivery

1. Introduction
XMPP has problems with guaranteed message delivery and absence of mandatory unique message
identifiers. This protocol is designed to solve both these problems and is necessary for many modern
extensions.

1.1. Goals
1.​ Guarantee the delivery of one and only one message copy from a client to server.
2.​ Provide a mechanism to resend messages without creating duplicate copies of the same message.
3.​ Provide the ability to identify and address any message on the server.
4.​ Provide information about the unique identifier of message to all conversation participants.
5.​ Provide information about the time when the XMPP server received the message to all conversation

participants.

1.2. Glossary
●​ Server — an XMPP server which confirms delivery of message.
●​ Sender — an XMPP client which sends messages and supports this protocol.
●​ Recipient — an entity to whom the message was addressed.
●​ Message Archive — an entity on the server which stores messages.
●​ Stanza ID — a unique identifier created by the Server in accordance with Unique and Stable Stanza

IDs (XEP-0359).
●​ Timestamp — an identifier created by the Server, containing timestamp when message was received

by the server.
●​ Origin ID — a unique identifier created by the Sender in accordance with Unique and Stable Stanza

IDs (XEP-0359).

1.3. Requirements
1.​ Each message on the Server MUST be assigned a unique identifier within the server (hereinafter

Stanza ID) and a timestamp (hereinafter Timestamp) when the message was received.
2.​ In the Message Archive, the message MUST be stored with Stanza ID and Timestamp.
3.​ The message MUST be sent with Stanza ID and Timestamp to the Recipient.
4.​ For messages that require guaranteed delivery of one and only one copy, the Sender supporting this

protocol MUST add an Origin ID.
5.​ Server MUST acknowledge message reception by providing the Sender with an information about the

Stanza ID and the Message Timestamp assigned to the message, associating it with the Origin ID.
6.​ After disconnecting and reconnecting, Sender MUST retry sending messages for which receipt

containing Stanza ID have not been received yet.
7.​ Only the Sender that had originally sent the message MAY retry sending it.
8.​ When retrying to send the message, the Sender MUST explicitly indicate that the message is being

resent.
9.​ Upon repeated message delivery, Server MUST provide the Sender the information about the previous

successful message delivery (if there was such), including the Stanza ID and the Message
Timestamp originally assigned to the message, and suppress further processing of the message.

This protocol MUST NOT be used for receiving read and delivery markers/receipts from remote clients.

2. Dependencies

2.1 Unique and Stable Stanza IDs
This protocol depends on XEP-0359: Unique and Stable Stanza IDs and extends its capabilities.

2.2 Message archive
A server implementing this protocol MUST store all incoming messages in Message Archive in accordance
with XEP-0313: Message Archive Management.

2.3. Message Carbons
Messages forwarded in accordance with XEP-0280: Message Carbons MUST contain a <stanza-id> assigned
by the server. This tightens the requirement of clause 3.5 of XEP-0313: Message Archive Management.

2.4. Session resumption
The client MUST try to use the same resource resuming a broken connection.

The client MUST comply with the requirements of Section 4.9.3.3 of RFC-6120.

The server MUST implement behavior No. 3 of Section 7.7.2.2 of RFC-6120, i.e. terminate an existing
connection in case establishing a new one with the same resource.

The server MUST disconnect the previously established connection restoring the session through XEP-0198
Stream Management, or MUST not support the restoration of sessions through XEP-0198.

3. Business rules

3.1. Message IDs
Sender generates an Origin ID to track message delivery to Server. It is a client-side identifier that is kept by
a client to track delivery receipts and error messages. It MUST NOT be used for any other purposes.

Sender MUST guarantee that the Origin ID is unique for all messages of all jid clients. The absence of such
guarantee may result in incorrect work of the protocol. It is RECOMMENDED to use UUID for Origin ID.

It is RECOMMENDED for the Sender to use the Origin ID value for ‘id‘ attribute of <message>.

For each stored message, Server generates a Stanza ID, which MUST be unique within the server. Each
message within the server is identified by unique Stanza ID. Sender SHOULD use <stanza-id> for message
tracking.

3.2. Delivery receipts
Delivery receipt MUST have type ‘headline’ and MUST NOT be stored in message archive.

Delivery receipt MUST be sent to the Sender.

Server SHOULD NOT confirm delivery of messages that are not intended to be stored in Message Archive.
This includes:

●​ ‘error’ type messages
●​ ‘headline’ type messages
●​ Messages with an empty body.

When searching for possible message duplicates, Server MUST search only within the messages of the
Sender’s jid.

Example 1.

Sender send message with Origin ID:

<message xmlns='jabber:client' type='chat' id='fa20384a-75ea-4d4e-bb39-49e0fd55473b'
from='juliet@capuliet.it/phone' to='romeo@montague.it'>
 <body>Hi!</body>
 <origin-id xmlns='urn:xmpp:sid:0' id='fa20384a-75ea-4d4e-bb39-49e0fd55473b' />
</message>

Server replies by sending delivery receipt to the Sender:

<message from='juliet@capuliet.it' to='juliet@capuliet.it/phone' type='headline'>
 <received xmlns='https://xabber.com/protocol/delivery'>
 <time by='juliet@capuliet.it' stamp='2020-03-16T11:46:33.970745Z'/>
 <origin-id id='fa20384a-75ea-4d4e-bb39-49e0fd55473b' xmlns='urn:xmpp:sid:0'/>
 <stanza-id by='juliet@capuliet.it' id='1584359193970745' xmlns='urn:xmpp:sid:0'/>
 </received>
</message>

3.3. Message archiving
Server MUST ensure that the value of attribute ‘stamp‘ of <time> tag added to the message under the current
protocol is equal to the value of attribute ‘stamp‘ of <delay> tag added by Message Archive. This is
necessary for the compatibility with the existing protocols.

Server MUST send generated <stanza-id> back to Sender. This is necessary to track message delivery. This
requirement conflicts with clause 3.5 of XEP-0313: Message Archive Management, that servers MUST NOT
include the <stanza-id> element in messages addressed to JIDs that do not have permissions to access the
archive. However, in XEP-0359: Unique and Stable Stanza IDs there are no restrictions on relaying
<stanza-id> to clients. Clause 5 of XEP-0359 states that <stanza-id> value SHOULD NOT be secret.
Consequently, this protocol does not observe this requirement of clause 3.5 of XEP-0313.

Use of receipts MUST NOT clutter message history. Therefore, delivery receipts MUST NOT be stored in the
message history.

3.4. Resending
By message re-sending Sender MUST include <retry/> tag to the message and send it with original Origin ID
to the Server.

Server MUST check if the message was stored in the Message Archive. If the message is found Server
MUST stop processing the message and send a receipt to the Sender.

Example 2. Sender try to re-send message:

Sender try to re-send a message:

<message xmlns='jabber:client' type='chat' id='fa20384a-75ea-4d4e-bb39-49e0fd55473b'
from='juliet@capuliet.it/balcony' to='romeo@montague.it'>
<body>Hi!</body>
<origin-id xmlns='urn:xmpp:sid:0' id='fa20384a-75ea-4d4e-bb39-49e0fd55473b' />
<retry xmlns='https://xabber.com/protocol/delivery'/>
</message>

Server searches for this message in the Message Archive. If Server found message he MUST send delivery
receipt:

<message from='juliet@capuliet.it' to='juliet@capuliet.it/balcony' type='headline'>
<received xmlns='https://xabber.com/protocol/delivery'>
<time by='juliet@capuliet.it' stamp='2020-03-16T11:46:33.970745Z'/>
<origin-id id='fa20384a-75ea-4d4e-bb39-49e0fd55473b' xmlns='urn:xmpp:sid:0'/>
<stanza-id by='juliet@capuliet.it' id='1584359193970745' xmlns='urn:xmpp:sid:0'/>
</received>
</message>

And MUST NOT send the message to the Recipient.

In case if the message is not found Server MUST work in the usual way.

3.5. Error handling
If Sender receives an error in response to sent message, Sender MUST consider that message delivery is not
possible and MUST NOT attempt to resend message using resending mechanism described in current
protocol. Sender MAY send a message again without the <retry> tag in the usual way.

Example 3. Sender got a error by message delivery

Sender sends message:

<message xmlns='jabber:client' type='chat' id='fa20384a-75ea-4d4e-bb39-49e0fd55473b'
from='juliet@capuliet.it/phone' to='romeo@montague.it'>
<body>Hi!</body>
<origin-id xmlns='urn:xmpp:sid:0' id='fa20384a-75ea-4d4e-bb39-49e0fd55473b' />
</message>

Server sends a error message:

<message xmlns='jabber:client' type='chat' id='fa20384a-75ea-4d4e-bb39-49e0fd55473b'
from='juliet@capuliet.it/phone' to='romeo@montague.it'>
<body>Hi!</body>
<origin-id xmlns='urn:xmpp:sid:0' id='fa20384a-75ea-4d4e-bb39-49e0fd55473b' />
<error code='404' type='cancel'>
<remote-server-not-found xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
<text xml:lang='en' xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'>DNS lookup failed: non-existing
domain</text>
</error>

</message>

	​
	
	XEP-DELIVERY: Reliable Message Delivery
	1. Introduction
	1.1. Goals
	1.2. Glossary
	1.3. Requirements

	2. Dependencies
	2.1 Unique and Stable Stanza IDs
	2.2 Message archive
	2.3. Message Carbons
	2.4. Session resumption

	3. Business rules
	3.1. Message IDs
	3.2. Delivery receipts
	3.3. Message archiving
	3.4. Resending
	3.5. Error handling

