Midterm 2 Review
CS 107, spring ‘21

The second midterm will focus primarily on material since the first midterm, but it is
comprehensive and will cover concepts and code from the entire semester.

The format for Midterm 2 will be similar to that of Midterm 1. It will consist of:

1) short-answer conceptual questions,

2) questions asking you to trace code blocks to determine how components and variables will
change, and

3) coding problems which are similar to labs done in class but different.

The test is closed book and notes, closed internet and communication. You will be able to
open Thunkable and your own apps within it, but that and your test are the only thing you should
view or interact with.

How to Study:

e (Re-) read the chapters

e Review your coding labs and projects. You can open these up during the test and tweak
them. Test yourself to see if you can code them from scratch so that you know you
understand them.
Go over lessons and worksheets, practice writing out answers to conceptual questions.
Practice tracing code, jotting down how properties and variables change on each
operation.
Review quizzes and midterm 1.
You are strongly encouraged to study with a group!

The questions will involve the topics listed below. The coding problems will be similar to the
ones you've done in labs/projects, but modified so make sure you really understand how they
work and how to apply them to slightly different problems (you can’t just memorize)

Topics Since Midterm 1

Persistence and Cloud

Spreadsheet coding
each row has an auto-generated id which is not the same as an index
see spreadsheet coding worksheet and solution at bottom

Mapping the Data Viewer List to a Data Source
“get value” and “create new row” block
Fixed data vs. Dynamic Data
Persistent data conceptual lesson
how does an app behave differently if its data is persistent?

https://docs.google.com/document/d/1LWgTR3UBlli3wYvVh3szGYXD_l-kOnCvNRsCmWXUeAU/edit?usp=sharing
https://docs.google.com/presentation/d/1z5PgLT8i4rlN5bX7mHRiKuf5plkFkd94zzwUv6l3N_g/edit?usp=sharing

Midterm 2 Review
CS 107, spring ‘21

What is the significance of MediaDB and Cloudinary? What type of app behavior and
persistence does it facilitate?

Stored and Cloud Variables
how do stored/cloud variables provide an alternative to spreadsheets for persistence?

how does an app’s behavior change if you switch a variable from “app” to “stored”? or
“cloud”?

You must set initial values for stored/cloud variables in the Screen.Opens (asking if value
is null)

Explain the significance of the event handler below. How does an app behave differently
when you put code in that event handler?

cloud pushups

app variable numberList

p-

Pushups sample, QA chat sample

Chapter 9 is helpful for these concepts.

Repeat Loops

repeat loops worksheet, solutions
Mechanics of count with, for each item in list, and repeat while.
what operations are performed automatically for each kind of repeat block?

Sample repeat code:

Add up numbers 1+2+...n, add up numbers in a list,

factorial: 1*2*3....*n

Count occurrences of something in a list, find minimum/maximum

Build a text string from a list, e.g., build an equation from a list of numbers, or put “--” in
between animals (see question 6 solution in repeat loops worksheet

e Be able to do repetitive operations like the ones listed here using the different type of
repeat blocks

Chapter 8 is helpful for these topics

https://docs.google.com/document/d/1GrOgIbfDJPMMMQARfMOlsseXUsn2eoFl1FzoAXf9LJo/edit?usp=sharing
https://docs.google.com/document/d/1GrOgIbfDJPMMMQARfMOlsseXUsn2eoFl1FzoAXf9LJo/edit?usp=sharing

Midterm 2 Review
CS 107, spring ‘21

Functions

Be able to code with functions including those with input parameters.

How does functional abstraction help in problem solving and software engineering?
What are the benefits of organizing an app with functions?

What are the benefits of defining a parameter for a function?

What is meant by refactoring?
What is meant by “code reusable functions”? How do parameters help? Why is it important?

What are the mechanics involved with a function call? Given some code with functions (and
calls), specify the order with which operations will be performed

Chapter 11 is helpful for these topics

Tracing an App

This has been a focus and is a key to coding and debugging. Practice mechanically stepping
through blocks, showing how each variable and property changes. You'll be asked to do this on
the test!

Older Topics with some updates

App Grammar: What does an app’s behavior consist of?
Chapter 1,2,3

| when event | | to doSomething
-
/ > response:
a sequence of operations
?‘l including conditionals and

repeat loops
App behavior consists of a set of event handlers
An event handler has an event and a response
Response consists of a sequence of operations
Operation is either a set, a call to a built-in function, or a call to a programmer-defined
function.

Midterm 2 Review
CS 107, spring 21

Some operations are conditional (within an if) and some are repeated.

Functions can have input parameters and a return value. Placeholder input parameters
defined within the function are called formal parameters. The data sent into the function
from the caller (put into a slot) are called actual parameters.

An app has hidden memory.

What does the hidden memory consist of?

Explain difference between the properties that appear in Designer and in hidden memory
Does the Ul change immediately when a property changes?

Component properties and variables are named memory cells

Properties are part of a component, variables are free agent memory cells

Properties referred to as “component.property”

What does “set” mean? What does “get” mean?

How do you increment a value?

When do you need to define a variable?

Chapter 3 is especially helpful for these questions

Conditionals

How do you ask questions in an app?
How would you code something with 4 possible branches?
if-elseif-elseif-else

else if B

boolean values
and/or/not
Chapter 3

Coding Timed (animated) Behavior

Timer/Animation pattern

When Timer Fires event handler
Timer.Enabled

Timer.Interval:

example: make a slider move from 0 to 100

Midterm 2 Review
CS 107, spring 21

Buttonl Click

Timer] = Enabled - true - ‘____________._.—-—-—-—"'_"
triggers eve
Timerl Fires -l—-—'_-_-_-_-_-_-_-_-_-_-_-_-_.—._ gg W

“intervalMilli n
from ET 70D set 70 to —— s ﬂ terva seconds

- 'Mﬂ =) N
[Timerl ~ I Enabled ~ L f2ise =l . under some condition,
= - s < .
— stop timer

e Suppose the slider value starts at 0. How long will it take for the value to get to 1007

some event starts timer

Tracing an app

Practice looking at code and stepping through it row by row. Using paper and pencil (or a
spreadsheet) and show how each property and variable changes as you step through the event
handlers.

Lists and Indexing

List variable-- named set of memory cells

index-- a variable used to keep track of the current position in a list, e.g., current quiz
question

incrementing the index, checking index vs. length of list

get block to get an item from a list

why important to use abstract “length of list” instead of a number

ListViewer-- how to display a list

Review various slideshow samples (wrap-around, disable next/prev)

Synchronized lists and lists of lists

Chapter 4

Calling Functions

° input parameters

° output parameters, scope of output parameters-- where can they be used
° nested calls

° use of Translator, ImageRecognizer, SpeechRecognizer, Camera

° Chapter 5

Text Operations

e join, get, length, upcase, Icase, Chapter 6

Canvas, Sprites, and Animation

e Key properties of sprites: x,y, speed, angle

Midterm 2 Review
CS 107, spring ‘21

e transporting and moving smoothly
e Key events of sprites (colliding with edges, other sprites)
e Chapter 7

	Topics Since Midterm 1
	Persistence and Cloud
	Repeat Loops
	Functions
	Tracing an App

	Older Topics with some updates
	App Grammar: What does an app’s behavior consist of?
	An app has hidden memory.
	Conditionals
	Coding Timed (animated) Behavior
	Tracing an app
	Lists and Indexing
	Calling Functions
	Text Operations
	Canvas, Sprites, and Animation

