
Reusing existing Scripts in the isolate
compilation cache

Attention - this doc is public and shared with the world!
Contact: seth.brenith@microsoft.com
Status: Inception | Draft | Accepted | Done
Bug: v8:12808

LGTMs needed
Name Write (not) LGTM in this row

leszeks

<add yourself>

Background

Isolate script cache
The Isolate script cache contains the top-level SharedFunctionInfo for previously executed
scripts, so that if the same script is evaluated again, the new script evaluation can use the
existing SharedFunctionInfo (as well as any other existing SharedFunctionInfos from that script,
along with their bytecode, etc.). This reuse is nice for load speed and saves memory.

If the top-level SharedFunctionInfo has its bytecode flushed, then it is removed from the Isolate
script cache. However, the Isolate script cache keeps a weak pointer to the Script object even
after the top-level SharedFunctionInfo is cleared, as implemented recently. This means there
are three possible outcomes when attempting to look up a script in the Isolate script cache:

1.​ Cache miss: there’s no data about this script
2.​ Cache hit: there’s a top-level SharedFunctionInfo which is compiled and ready to

execute
3.​ Partial cache hit: there’s a pre-existing Script, but it has no top-level SharedFunctionInfo,

or the top-level SharedFunctionInfo isn’t compiled

https://bugs.chromium.org/p/v8/issues/detail?id=12808
https://v8.dev/blog/v8-lite#bytecode-flushing
https://chromium-review.googlesource.com/c/v8/v8/+/3597106

Ideally, all code paths would reuse the existing Script in the third case. Even though the
top-level code needs recompilation, it is possible to save substantial memory by avoiding
duplication of SharedFunctionInfos for other function literals within the script.

Ways to compile a script
There are four ways to generate bytecode for a script:

1.​ Parse the source text on the main thread.
2.​ Parse the source text on a background thread.
3.​ Deserialize code cache data on the main thread.
4.​ Deserialize code cache data on a background thread.

Both options involving background threads can start without the full script text being available.
They must perform some finalization work on the main thread, but we generally try to keep that
main-thread work as small as possible.

Handling a partial hit in the Isolate script cache is already implemented for the case of parsing
on the main thread (which was very simple), but not yet for the other three cases.

Purpose of this document
This document describes some possible strategies for reusing an existing Script from the
compilation cache when the new script instance is being parsed on a background thread or
deserialized from code cache data, so that all four code paths listed above can benefit from the
existing Script.

Implementation options

Option 1: Compile normally and then merge on the main thread
We can allow compilation to finish as usual, and then do a traversal of the newly created objects
to merge their data into the existing Script. This option is appealing because of its simplicity: the
same implementation works for any compilation method, the code is easy to read, and there are
no threading risks to worry about. Here is a CL that implements this option.

When merging, we must reuse the pre-existing SharedFunctionInfos and bytecode wherever
possible, since there might be pointers from elsewhere in the heap to those objects. If the newly
compiled script contains a SharedFunctionInfo or bytecode that is lacking from the old script, we
can update the old script to point to the new version of that object. Then we traverse the new

https://v8.dev/blog/code-caching-for-devs
https://chromium-review.googlesource.com/c/v8/v8/+/3638816

object graph in order to find pointers to SharedFunctionInfos or the Script, and update those
pointers to refer to the corresponding pre-existing objects.

The following diagrams show what such a merge might look like for an extremely small script.
On the right is the pre-existing script found in the Isolate script cache. It has no first
SharedFunctionInfo, and its second SharedFunctionInfo has no bytecode. On the left is a newly
compiled copy of the same script, where both SharedFunctionInfos were eagerly compiled. Note
that the first SharedFunctionInfo has a reference to the second via its bytecode’s constant pool;
this reference must be found by traversal and updated. These diagrams omit feedback
metadata for simplicity, but it would be handled like bytecode.

Before merging:

After merging:

Not every new object needs to be traversed when searching for pointers to update; the objects
that will be removed (light gray) can easily be skipped.

The primary downside of this option is that it takes nontrivial time on the main thread. In some
brief testing, I found that merging generally took 25-30 percent of the time it took to deserialize
code cache data. Another downside is generation of objects which immediately become
garbage (the light gray objects in the “after merging” diagram).

I believe that main-thread merging is the best option if partial cache hits are somewhat rare,
because ease of maintenance outweighs the runtime costs. Furthermore, I suspect that partial
cache hits are somewhat rare, based on the fact that nobody else has bothered to implement
this feature before now. Perhaps we could start by getting some real-world telemetry on the
partial cache hit rate (here is a CL to do so).

Option 2: Find slots on a background thread, then merge on the
main thread
We could substantially cut down on the main thread merging time by splitting the merge
algorithm into two parts: first, traverse the new object graph to find any slots that might need
updating (anything that points to a Script or SharedFunctionInfo), and second, perform the
merge iterating only those slots instead of every slot in the new object graph. This approach
allows the object graph traversal to happen on a background thread, though putting that work in
the background requires more GC awareness (handles, safepoints, rehashing the progress
table after GC, etc.).

https://chromium-review.googlesource.com/c/v8/v8/+/3651420

The tricky part is determining whether it is worthwhile to iterate the objects and find slots on the
background thread, since performing the iteration on every background script compilation would
be a waste of time. A background parsing task has the full source text by the time it completes,
and thus could check the Isolate script cache in a careful thread-safe manner, but a background
deserialization task never receives the full source text. So without further modifications, this
option applies only to background parsing.

It is possible, with unlucky timing, that the main thread finalization logic finds a cached script
even though the background thread did not, so occasionally the main thread will need to
perform the object iteration.

Option 2a: Provide the full source text to a background deserialization task
I’m unsure of the specifics here, but perhaps we could extend the API and allow the embedder
to provide the source text to a background deserialization task once it’s available. Then the
approach described above would work equally well for both background parsing and
background deserialization.

Option 2b: allow Isolate script cache lookups by URL
The Isolate script cache allows reuse of scripts only when it is correct to do so: the source text is
identical, and the script was loaded from the same origin with the same options. However, a
new script loaded from the same URL as a previous script will probably have the same source
text as the previous script. What if the Isolate script cache contained a second table where it
was possible to look up scripts by just origin and options, not source text? I believe the
embedder could easily provide this data when creating the background task. V8 could do a
lookup in this second table when creating a background parsing or deserialization task, and use
its result to guide what work the background task does. If the table indicates that the Script
exists but doesn’t have a compiled top-level SharedFunctionInfo, then the background thread
should do the extra work to find slots in preparation for a merge.

This option allows another tangential improvement: if the table indicates that a compiled
top-level SharedFunctionInfo is already available when creating a background task, then the
background task should do nothing because any work will likely be thrown away.

Option 3: Track slots as they’re created, then merge on the main
thread
Instead of traversing the new object graph after parsing or deserialization is complete to find the
slots that point to SharedFunctionInfos or the Script, we could build that list of slots as we build
the objects. This change would be somewhat intrusive in both the code cache deserializer and
the parser, but would probably be faster than a separate graph traversal. A background parsing

or deserialization task would need to know ahead of time whether to collect this list, so the
imprecise script cache by URL as discussed in option 2b is probably a prerequisite. To mitigate
the increased possibility of bugs, it might be valuable to extend the merge algorithm to replace
the removable objects with FreeSpace; this way, the heap verifier could notice if something is
still pointing to those objects.

— I’m pretty sure everything below this line is a bad idea —

Option 4: Perform the entire merge on a background thread
With the right locks in the right places, or a lot of deep thought, perhaps we could come up with
a way to perform the merge on a background thread. This sounds very difficult and error-prone.

Option 5: ThinSharedFunctionInfo
Like ThinString, but for SharedFunctionInfo. This would speed up the merge at the cost of
adding complexity to all the rest of V8.

	Reusing existing Scripts in the isolate compilation cache
	LGTMs needed
	Background
	Isolate script cache
	Ways to compile a script

	Purpose of this document
	Implementation options
	Option 1: Compile normally and then merge on the main thread
	Option 2: Find slots on a background thread, then merge on the main thread
	Option 2a: Provide the full source text to a background deserialization task
	Option 2b: allow Isolate script cache lookups by URL

	Option 3: Track slots as they’re created, then merge on the main thread
	Option 4: Perform the entire merge on a background thread
	Option 5: ThinSharedFunctionInfo

