
 CURB DATA SPECIFICATION
SPEC DRAFT AND IDEAS
Jun-Oct 2021

​

DRAFT DOC FOR CDS DISCUSSIONS

Draft Curb Data Specification ideas and details to be worked out and commented on here,

for future inclusion into the CDS GitHub repo by the Working Group Steering Committee.

Document structure:

1.​ The first section (CURB DATA SPECIFICATION) shows what will be included in the

repo in Markdown in the future.

2.​ The second section (IDEAS/DISCUSSIONS) is a free-form area to discuss and share

things that may go into the first section.

CDS WORK SHIFTED TO GITHUB

Thanks to everyone who contributed comments and suggestions to

this working draft document. Now all discussions and spec work

are happening on GitHub where you can see this document turned

into a spec. Please leave your thoughts as Issues or Discussions,

and you can make code/spec suggestions with Pull Requests.

https://github.com/openmobilityfoundation/curb-data-specification/wiki
https://github.com/openmobilityfoundation/curb-data-specification
https://github.com/openmobilityfoundation/curb-data-specification/wiki#steering-committee
https://github.com/openmobilityfoundation/curb-data-specification
https://github.com/openmobilityfoundation/curb-data-specification/wiki/Web-Conference-2021.11.02-Curb
https://github.com/openmobilityfoundation/curb-data-specification/wiki/Web-Conference-2021.11.02-Curb
https://github.com/openmobilityfoundation/curb-data-specification/issues
https://github.com/openmobilityfoundation/curb-data-specification/discussions
https://github.com/openmobilityfoundation/curb-data-specification/pulls

CURB DATA SPECIFICATION

Overview
Urban curb is a valuable, limited, and often under-managed part of the public right of

way. Curb demand is growing, including from commercial activity like passenger

pickup/drop off, traditional and on-demand delivery services, new mobility programs like

scooters, bikeshare, and carshare, and goods and freight delivery. While cities have made

some progress in digitizing their curb and using curb data, more tools are needed to

proactively manage curbs and sidewalks, and in doing so deliver more public value from

this scarce resource. Curb data standards can provide a mechanism for expressing static

and dynamic regulations, measuring activity at the curb, and providing access and

utilization for curb users.

The Curb Data Specification (CDS) will help cities and companies pilot and scale dynamic

curb zones that optimize commercial loading activities of people and goods, and measure

the impact of these programs.

In the short term we will produce standards that are necessary to support dynamic curb

utilization use cases for commercial loading activities by privately operated companies. In

the long term we want to help cities manage their curb zone programs and surrounding

areas and measure the utilization and impact for all use cases.

The CDS will be consumed by both cities and transportation providers operating in the

public right of way. In many cases, the same mobility providers using curbs with CDS may

also be interacting with other OMF MDS Policy, MDS Provider, and MDS Agency data

objects within the same MDS Jurisdiction, and MDS Geography. Consistent with the

Technology Design Principles codified in the OMF Architectural Landscape Document, the

members of this working group are making reasonable best efforts to ensure that work is

https://github.com/openmobilityfoundation/mobility-data-specification/tree/main/policy
https://github.com/openmobilityfoundation/mobility-data-specification/tree/main/provider
https://github.com/openmobilityfoundation/mobility-data-specification/tree/main/agency
https://github.com/openmobilityfoundation/mobility-data-specification/tree/main/jurisdiction
https://github.com/openmobilityfoundation/mobility-data-specification/tree/main/geography
https://github.com/openmobilityfoundation/governance/blob/main/documents/OMF-MDS-Architectural-Landscape.pdf

both modular and interoperable with other technology managed by the OMF as to avoid

duplication and downstream implementation complexity.

Work in Progress
The CDS is a work in progress and is under ongoing development by the community. The

goal is to release a beta version of the spec by the end of 2021 and incorporate feedback

from pilot programs into future versions.

Working Group
The OMF’s Curb Management Working Group, led by a steering committee of individuals

representing public agencies and private sector companies, is developing this data

specification for curb usage. The CDS will encompass digitized curb regulations, real time

and historic event information, and utilization metrics. The specification will allow

sharing of this data between cities, commercial companies, and the public.

​

For more information see our current Curb Management Working Group page.

Curb Data Specification APIs
CDS is at its core a set of Application Programming Interfaces (APIs) and endpoints within

those APIs, which allow information to flow between organizations using and managing

the curb areas.

CDS is a data exchange format and a translation layer between internal systems and

external entities using data feeds. It is not expected that CDS will be the format used

internally to store curb regulations in a city. The internal storage format is something

different, and a subset of that data should be able to be converted to CDS for publishing

out to the public and curb users.

https://github.com/openmobilityfoundation/curb-data-specification/wiki

Curbs API
A way for cities to specify areas of interest along the curb that can be connected to events

and regulations and shared with companies and the public.

Open Discussion Topics for Curb

Topics that are unresolved, required a decision to be made, or warrant future discussion.

1.​ Curb regulations should fit the use cases needed for the first draft of CDS, but also

be built so they can expand to all curb areas in the long term.

2.​ Curb areas cannot be defined across multiple blocks, including cross streets, alleys,

and service roads. We need to see if some cities have use cases where this is not

viable.

3.​ How should pricing be defined in the rules within the Curb Regulation object? In

new Policy object.

4.​ Unit of measurement. Meters as floating point decimal numbers (eg, 5.28) are used

throughout the spec. But are cities using and thinking in feet in some areas and is

it a chore to convert integer feet measurements to meters everywhere (eg. 6 feet

may have to be 1.8288 meters)? If we need feet, where do we specify the unit, next

to each field occurrence (eg, ‘length’ and ‘length_units’), or more globally at a

higher level in the spec? Agreed on centimeters.

5.​ How does CDS / and the Curb API work in conjunction with OMF’s MDS, like MDS

Policy, Geography, and Jurisdiction APIs. No direct overlap/use yet, except maybe

using Geography to define curb Areas, Zones, and Spaces, but we can do that later

to avoid complexity with serving and connecting to that API.

6.​ Should endpoints be GeoJSON format with CDS details in the ‘properties’, or more

freely structured JSON like MDS with GeoJSON objects in them when needed?

Decided on JSON.

7.​ How much do we align field names to MDS standards when talking about Curb

Regulation objects, since this borrows a lot from Curb LR and some terms/fields are

differently named?

8.​ How dynamic should the endpoints be? Should the processing be done on the host’s

side with dynamic parameters and filtering being possible, or should the endpoints

be more static and serve larger amounts of data at once with less querying? The

former is more complex and likely requires third parties, where the latter may be

easier for cities to implement on their own.

Curb Zone objects

A Curb Zone is a geographical entity representing a single region along the curb. What

constitutes an individual curb location is determined by the city, but all curb locations

MUST meet the following criteria:

1.​ Always have a common regulation along their entire extent (i.e., if at certain

times of day, half of a given stretch of curb is a loading zone and the other half is

metered parking, that stretch of curb must be divided into at least two curb

locations);

2.​ Never span multiple blocks -- an entire curb location must be on the same street

and be between the same two cross streets, alleys, or service roads.

3.​ Never overlap other Curb Zones in the same dataset with overlapping validity

times. This applies to both polygon geometries and linear references (if used).

4.​ Be assigned a unique ID, in the form of a UUID. This ID SHOULD remain

consistent as long as the curb location's extent and regulations remain

substantially the same.

5.​ It SHOULD NOT be possible to legally park a single vehicle in two different curb

locations at the same time (i.e., a given non-demarcated parking area or loading

zone should be represented as a single curb location), unless this conflicts with the

requirements above.

Curb Zone Fields

A Curb Zone is represented as a JSON Feature, whose fields are as follows:

●​ curb_zone_id: String; required. The UUID for the curb location.

○​ New ID: When a Curb Zone ceases to be valid, or it needs substantive

changes, its ID must not be reused by a Curb Zone with different data, even if

it occupies the same location. If data updates reflect changes in the physical

world or agency regulations, a new ID MUST be assigned.

○​ No new ID: data updates that reflect changes in how the same physical

locations or regulations are modeled digitally -- e.g., additional metadata, or

regulations being modeled more accurately -- should not be implemented by

ending a Curb Zone's validity and creating a new one with a new ID. The

existing Curb Zone can be updated silently with the new data; callers should

not rely on a Curb Zone with the same ID remaining identical over time.

●​ geometry: Object; required. A GeoJSON Polygon geometry representing the spatial

extent of this curb zone.

●​ curb_policy_ids: Array of strings, required. An array of UUIDs, each one of which

is the ID of a Policy object. Together, these define the regulations of this Curb Zone.

●​ start_date: String, required. An RFC 3339 date/time string defining the earliest

time that the data for this curb location is known to be valid. This could be the date

on which the data was collected, for instance. This MUST never change for a given

id.

●​ end_date: String, optional. An RFC 3339 date/time string defining the time at

which the data for this curb location ceases to be valid. If not present, the data will

be presumed to be valid indefinitely.

●​ location_references: Array, optional. An array of one or more Location Reference

objects defining linear reference information for this curb location.

●​ name: String, optional. A human-readable name for this Curb Zone that identifies

it to end users.

●​ user_zone_id: String, optional. An identifier that can be used to refer to this Curb

Zone on physical signage as well as within mobile applications, typically for

payment purposes.

●​ street_name: String, optional. The name of the street that this curb location is on.

●​ cross_street_start_name: String, optional. The name of the cross street at the

start of this curb location (which cross street is at the start and end of the location

is defined in the same direction as the linear reference for this curb; if no linear

reference is provided, start and end SHOULD be oriented such that start comes

before end when moving in the direction of travel for the roadway immediately

adjacent to the curb.)

●​ cross_street_end_name: String, optional. The name of the cross street at the end

of this curb location.

●​ length: Integer, optional. The length, in centimeters, of the Curb Zone when

projected along the street centerline. Note that this is the definitive length of the

curb area, and not the edge length of the geographic polygon.

●​ available_space_lengths: Array, optional. If availability information is present,

an array of numbers containing the lengths (in centimeters) of all known

non-overlapping available spaces within this Curb Zone. In cases where availability

is known less precisely, this data MAY be inferred from a model.

●​ availability_time: String, optional. If availability information is present, the RFC

3339 timestamp corresponding to the most recent time that availability was

computed for this zone.

●​ width: Integer, optional. The width, in centimeters, that the Curb Zone occupies

from the curb to the roadway lane.

●​ parking_angle: String, optional. The angle in which passenger vehicles in this

Curb Zone are meant to park. May take one of the following values:

○​ parallel

○​ perpendicular

○​ angled

●​ num_spaces: Integer, optional. The number of demarcated spaces within this Curb

Zone. Demarcated spaces may also be specified using the curb_spaces API

endpoint.

●​ street_side: String, optional. The cardinal or subcardinal direction representing

the side of the roadway that this curb is on. Maybe "N", "NE", "E", "SE", "S", "SW",

"W", or "NW". For cities with "grid directions", the side MAY be based on the grid

direction rather than the closest true-north compass direction, but MUST NOT be

more than 90 degrees away from the true compass direction.

●​ median: Boolean, optional. If "true", this curb location is on the median of a street,

rather than its edge. A median is a strip of land separating two roadways within

the same street. Note that, for medians, street_side is interpreted relative to the

roadway that the particular curb is on, so the curb along the median of the

southern roadway of a divided street would have street_side of "N".

●​ entire_roadway: Boolean, optional. If "true", this curb location takes up the entire

width of the roadway (which may be impassible for through traffic when the Curb

Zone is being used for parking or loading). This is a common condition for

alleyways. If entire_roadway is "true", street_side MUST NOT be present.

●​ curb_area_id: String, optional. The UUID of the Curb Area that this Curb Zone is a

part of. If specified, the area identified MUST be retrievable through the Curb API

and its geographical area MUST contain that of the Curb Zone.

Location Reference objects

A Location Reference defines a linear reference for a given Curb Zone. A linear reference

defines a Curb Zone's position by reference to a linear feature, like a street centerline or

edge-of-pavement line. Linear referencing systems can be global, like SharedStreets linear

references or OpenLR, or local to a particular city.

https://sharedstreets.io/
https://sharedstreets.io/
http://www.openlr.org/index.html

Location Reference Fields

A Location Reference is a JSON object with the following fields:

●​ source: String, required. An identifier for the source of the linear reference. This

field MUST contain a URL that provides more information about the underlying

map or reference system. Values include (but other can be used):

○​ https://sharedstreets.io: SharedStreets

○​ http://openlr.org: OpenLR

○​ https://coord.com: Coord

○​ https://yourcityname.gov: custom city LR, direct link if possible

●​ ref_id: String, required. The linear feature being referenced (usually a street or

curb segment). For OpenLR, this is the Base64-encoded OpenLR line location for the

street segment of which this Curb Zone is part, and the start and end offsets below

are relative to this segment.

●​ start: Integer, required. The distance (in centimeters) from the start of the

referenced linear feature to the start of the Curb Zone.

●​ end: Integer, required. The distance (in centimeters) from the start of the referenced

linear feature to the end of the Curb Zone. end MAY be smaller than start, implying

that the direction of the Curb Zone is opposite to the direction of the referenced

linear feature.

●​ side: String, optional. If the referenced linear feature is a roadway, the side of the

roadway on which the Curb Zone may be found, when heading from the start to the

end of the feature in its native orientation. Values are "left" and "right". MUST be

absent for features where entire_roadway is true.

Policy objects

A Policy object is a rule that allows or prohibits a particular set of users from using a

particular curb at a particular time or times. Multiple Policy objects together define the

full extent of regulations within a Curb Zone. Much of this is similar to curbLR.

https://sharedstreets.io
http://openlr.org
https://coord.com
https://yourcityname.gov
https://github.com/curblr/curblr-spec/blob/master/Regulations.md

The "policy" field within the FeatureCollection returned by /curb/zone contains a list of

the Policy objects referenced by the returned zones.

A Policy contains the following fields:

●​ curb_policy_id: String, required. A UUID that uniquely identifies this exact

regulation across Curb Zones. Two Policy objects containing the same

curb_policy_id MUST be completely identical. A curb_policy_id MUST never be

reused—once created, it must continue to refer to the identical policy forever.

●​ priority: Integer, required. Specifies which other regulations on the same Curb

Zone this one takes precedence over. If two Policies have overlapping Time Spans

and apply to the same user class, the one that applies at a given time is the one

with the lowest priority. Two policies that apply to the same Curb Zone with

overlapping Time Spans and user classes MUST NOT have the same priority.

●​ rules: Array of objects, required. A single policy can include multiple rules, but

each of these rules MUST specify disjoint lists of user classes.

○​ activity: String, required. The activity that is forbidden or permitted by this

regulation. Value MUST be one of the following:

■​ travel (to represent curbside lanes intended for moving vehicles, like

bus lanes, bike lanes, and rush-hour-only travel lanes; implies that

parking, loading, and stopping are prohibited)

■​ parking (implies that loading and stopping are also permitted)

■​ no parking

■​ loading (of goods; implies that stopping is also permitted)

■​ no loading (implies that parking is also prohibited)

■​ stopping (stopping briefly to pick up or drop off passengers)

■​ no stopping (stopping, loading, and parking are all prohibited)

○​ max_stay: Integer, optional. The length of time (in minutes) for which the

curb may be used under this regulation.

○​ no_return: Integer, optional. The length of time (in minutes) that a user

must vacate this Curb Zone before allowed to return for another stay.

○​ user_classes: Array, optional. If specified, this regulation only applies to

users matching the classes contained within. If not specified, this regulation

applies to everyone. New user classes MAY be generated by data providers to

reflect their regulations, but when possible, the following known values

should be used:

■​ bicycle

■​ bus

■​ handicap

■​ motorcycle

■​ official

■​ permit

■​ rideshare

■​ taxi

■​ commercial (applies to "truck"; if both "commercial" and "truck" are

specified, trucks use the "truck" rule).

■​ truck

○​ rate: Array, optional. The cost of using this Curb Zone when this regulation

applies. Rates are repeated to allow for prices that change over time. For

instance, a regulation may have a price of $1 for the first hour but $2 for

every subsequent hour.

■​ per_hour: Integer, required. The rate per hour for this space in cents

(or the smallest denomination of local currency).

■​ increment_minutes: Integer, optional. If specified, this is the

smallest amount of time a user can pay for (e.g., if increment_minutes

is 15, a user can pay for 15, 30, 45, etc. minutes).

■​ increment_amount: Integer, optional. If specified, the rate for this

space is rounded up to the nearest increment of this amount, specified

in the same units as per_hour.

■​ start_minutes: Integer, optional. The amount of time the vehicle

must have already been present in the Curb Zone before this rate

starts applying. If not specified, this rate starts when the vehicle

arrives.

■​ end_minutes: Integer, optional. The amount of time after which the

rate stops applying. If not specified, this rate ends when the vehicle

departs.

●​ time_spans: Array, optional. If specified, this regulation only applies at the times

defined by the Time Span objects within.

The JSON response to the object MUST contain a "" property, whose value is a Metadata

object with the following properties:

...

Time Span objects

A Time Span defines a period of time (that may occur once or repeatedly) during which a

given regulation applies. When multiple fields are combined, all criteria must be met in

order for a given Time Span to apply. For instance, if days_of_week is ["mon", "tue"],

time_of_day_start is "10:00", and time_of_day_end is "13:00", the Time Span contains all

times between 10AM and 1PM on Mondays and Tuesdays.

Time Span Fields

A Time Span object contains the following fields:​

●​ from: String, optional. An RFC 3339 date/time string defining the earliest point in

time that this Time Span could apply. If unspecified, the Time Span applies to all

matching periods arbitrarily far in the past.

●​ to: String, optional. An RFC 3339 date/time string defining the latest point in time

that this Time Span could apply. If unspecified, the Time Span applies to all

matching periods arbitrarily far in the future.

●​ days_of_week: Array, optional. An array of days of the week when this Time Span

applies, specified as 3-character strings ("sun", "mon", "tue" ,"wed", "thu", "fri",

"sat").

●​ days_of_month: Array, optional. An array of days of the month when this Time

Span applies, specified as integers (1-31). Note that, in order to specify, e.g., the "2nd

Monday of the month", you can use days_of_month combined with days_of_week

(in this case, days_of_week = ["mon"] and days_of_month = [8,9,10,11,12,13,14]).

●​ months: Array, optional. An array of months as integers (1=January,

12=December). If specified, this Time Span applies only during these months.

●​ time_of_day_start: String, optional. An "HH:MM" string representing the

24-hour local time that this Time Span starts to apply. If unspecified, this Time

Span starts at midnight.

●​ time_of_day_end: String, optional. An "HH:MM" string representing the 24-hour

local time that this Time Span stops applying. This is not inclusive, so for instance

if time_of_day_end is "17:00", this Time Span goes up to 5PM but does not include

it. If unspecified, this Time Span ends at midnight.

●​ designated_period: String, optional. A string representing an arbitrarily-named,

externally-defined period of time. Any values MAY be specified but the following

known values SHOULD be used when possible:

○​ snow emergency

○​ holidays

○​ school days

○​ game days

●​ designated_period_except: Boolean, optional. If specified and true, this Time

Span applies at all times not matching the named designated period. (e.g., if

designated_period is "snow emergency" and designated_period_except is true, this

Time Span does not apply on snow days).​

Curb Area objects

Defines curb areas in a city and their properties. A Curb Area is a particular neighborhood

or area of interest that includes one or more Curb Zones. Important notes about Curb

Areas:

●​ Curb Areas may overlap with other Curb Areas

●​ Curb Areas are not meant to be city-wide, and instead should be an area of interest

around a Curb Zone that is no bigger than a neighborhood.

Curb Area Fields

A Curb Area is represented as a JSON Feature, whose fields are as follows:

●​ curb_area_id: String; required. The UUID for the curb area.

●​ geometry: Object; required. A GeoJSON Polygon geometry representing the spatial

extent of this curb location.

●​ name: String; required. The name of this curb area.

●​ curb_zone_ids: Array, required. The UUIDs of all the Curb Zones included within

this Curb Area at the requested time.​

Curb Space objects

Defines individual demarcated spaces within a Curb Zone. Important notes about Curb

Spaces:

●​ Curb Spaces may NOT overlap with other Curb Spaces

●​ Curb Spaces must be wholly contained within a single Curb Zone

Curb Space Fields

A Curb Space is represented as a JSON Feature, whose fields are as follows:

●​ curb_space_id: String; required. The UUID for the curb space.

●​ geometry: Object; required. A GeoJSON Polygon geometry representing the spatial

extent of this curb location.

●​ curb_zone_id: String; required. The UUID of the Curb Zone this space is within.

The geometry of the specified Curb Zone MUST contain the geometry of this space.

●​ space_number: Integer; optional. The sequence number of this space within its

Zone. If specified, two spaces within the same Curb Zone MUST NOT share a space

number, and space numbers SHOULD be consecutive positive integers starting at 1.

●​ length: Integer; required. Length in centimeters of this Space. Note vehicles may

have to account for a buffer for doors, mirrors, bumpers, ramps, etc.

●​ width: Integer; required. Width in centimeters of this Space. Note vehicles may

have to account for a buffer for doors, mirrors, bumpers, ramps, etc.

●​ available: Boolean; optional. Whether this space is available for vehicles to park in

at the specified time (‘True’ means the Space is available). Provided if agencies have

the capability to track this in near real-time.

●​ availability_time: String, optional. If availability information is present, the RFC

3339 timestamp corresponding to the most recent time that availability was

computed for this space.

Metadata objects

Every JSON Curbs API object MUST contain a "metadata" property, whose value is a

Metadata object with the following fields:

●​ time_zone: String, required. The time zone that applies to parking regulations in

this dataset. MUST be a valid TZ database time zone name (e.g. "US/Eastern" or

"Europe/Paris").

●​ currency: String, required. The ISO 4217 3-letter code for the currency in which

rates for curb usage are denominated.

●​ author: String, optional. The name of the organization that produces and

maintains this data.

●​ license_url: String, optional. URL to the licensing terms under which this data is

provided.

Examples

Get All Curb Zones

Below is an example Curb Zone object. Its regulations specify no stopping 7am-8:30am

every 2nd Monday of the month (for street sweeping); 30-minute commercial loading only

from 7am to 1pm on weekdays; two-hour, $4-per-hour parking 1pm to 6pm on weekdays;

and unlimited free parking all other times.

GET /curb/zone

{

​ "id": "24a025d3-01d0-4a1f-aed1-6554921720ea",

 "geographies": [{

​ ​ "type": "Feature",

​ ​ "geometry": {​

​ ​ ​ "type": "Polygon",

​ ​ ​ "coordinates": [[

​ ​ ​ ​ [-85.76236289,38.25727805], [-85.76301090,38.25735176],

​ ​ ​ ​ [-85.76299281,38.25742378], [-85.76235544,38.25735811],

​ ​ ​ ​ [-85.76236289,38.25727805]

​ ​ ​]]

​ ​ } }],

​ "regulations": [{

​ ​ // Street cleaning 7-8:30 2nd Monday of every month

​ ​ "rule": {"activity": "no stopping"},

​ ​ "time_spans": [{

​ ​ ​ "time_of_day_start": "07:00",

​ ​ ​ "time_of_day_end": "08:30",

​ ​ ​ "days_of_week": ["mon"],

​ ​ ​ "days_of_month": [8, 9, 10, 11, 12, 13, 14]

​ ​ }]

​ }, {

​ ​ // 30 min commercial loading 7am-1pm weekdays

​ ​ "rule": {"activity": "loading", "max_stay": 30},

​ ​ "user_classes": ["commercial"],

​ ​ "time_spans": [{

​ ​ ​ "time_of_day_start": "07:00",

​ ​ ​ "time_of_day_end": "13:00",

​ ​ ​ "days_of_week": ["mon", "tue", "wed", "thu", "fri"]

​ ​ }]

​ }, {

​ ​ // All others no stopping during loading hours

​ ​ "rule": {"activity": "no standing"},

​ ​ "time_spans": [{

​ ​ ​ "time_of_day_start": "07:00",

​ ​ ​ "time_of_day_end": "13:00",

​ ​ ​ "days_of_week": ["mon", "tue", "wed", "thu", "fri"]

​ ​ }]

​ }, {

​ ​ // 2 hour $4/hour parking 1pm-8pm weekdays

​ ​ "rule": {"activity": "parking", "max_stay": 120},

​ ​ "time_spans": [{

​ ​ "time_of_day_start": "13:00",

​ ​ "time_of_day_end": "18:00",

​ ​ "days_of_week": ["mon", "tue", "wed", "thu", "fri"]

​ }],

​ "rate": [{"per_hour": 400}]

​ }, {

​ ​ // Unrestricted parking by default

​ ​ "rule": {"activity": "parking"}

​ }],

​ "valid_as_of": "2021-03-21T12:00:00.000Z",

​ "location_references": [{

​ ​ // SharedStreets linear reference

​ ​ "source": "https://sharedstreets.io",

​ ​ "ref_id": "592c2106e6553d3c930a372763f10254",

​ ​ "start": 5,

​ ​ "end": 38.5,

​ ​ "side": "right"​

​ }],

​ "street_name": "Main St",

​ "cross_street_start_name": "1st St",

​ "cross_street_end_name": "2nd St",

​ "street_side": "W",

​ "length": 33.5,

​ "parking_angle": "parallel",

​ "num_spaces": 4,

​ "curb_area": "3c29a043-f8a1-496b-a554-990dd7f7e1e2"

}

​ ​ ​

Endpoints

GET /curbs/zone: Query Curb Zones.

​ Required.

Parameters (all optional):

●​ area: The UUID of a Curb Area. If specified, the provider MAY only return

Curb Zones contained within this area.

●​ min_lat/min_lng/max_lat/max_lng: Specifies a bounding box; if one of

these parameters is specified, all four MUST be. If specified, the provider

MAY only return Curb Zones that intersect the supplied bounding box.

●​ lat/lng/radius: If one of these parameters is specified, all three MUST be. If

specified, returns only Curb Zones that are within radius centimeters of the

point identified by lat/lng. Curb Zones in the returned feature collection

MUST be ordered ascending by distance from the center point.

●​ include_geometry: If the value is "false", the API provider MAY choose not

to include the "geometry" field within the Curb Zone feature object.

●​ include_policy: If the value is "false", the API provider may choose not to

include the "policy" field within the returned FeatureCollection; policy IDs

MUST still be returned within Curb Zone objects.

●​ time: An RFC 3339 date/time string that specifies a particular moment in

time. If not present, defaults to the current time. The provider MAY choose

not to return Curb Zone objects whose validity period does not include this

time. This is also used for the timing of availability data (if supplied).

Returns: a JSON file whose features are Curb Zones, also containing metadata and

policy fields.

GET /curbs/zone/<id>: Fetch a single Curb Zone.

​ Optional.

Parameters (optional):

●​ time: An RFC 3339 date/time string that specifies a particular moment in

time. If not present, defaults to the current time, or (if the requested zone's

end_date is before the current time) the effective_date of the requested zone).

This is used for the timing of availability data (if supplied). If a time is

specified that is before the requested zone's effective_time or at or after its

end_time, the server SHOULD return a 400 status code.

●​ include_geometry: If the value is "false", the API provider MAY choose not

to include the "geometry" field within the Curb Zone feature object.

Returns: a single JSON Curb Zone feature.

GET /curbs/policy: Query Curb Policies.

​ Optional.

Parameters (optional):

●​ ids: A comma-separated list of policy IDs, the policies to return. If not

present, returns all policies known by the provider. The provider MAY choose

to return additional policies not listed.

Returns: A JSON object with a single policy field, containing a list of Policy

objects.​

GET /curbs/policy/<id>: Fetch a single Curb Policy.

​ Optional.

Parameters: none

Returns: a single Policy object matching the requested ID.

GET /curbs/area: Query Curb Areas

​ Optional (if not implemented, server should reply with HTTP 501).

Parameters (all optional):

●​ min_lat/min_lng/max_lat/max_lng: Specifies a bounding box; if one of

these parameters is specified, all four MUST be. If specified, returns Curb

Areas that intersect the supplied bounding box.

●​ lat/lng/radius: If one of these parameters is specified, all three MUST be. If

specified, returns only Curb Areas that are within radius centimeters of the

point identified by lat/lng. Curb Areas in the returned feature collection

MUST be ordered ascending by distance from the center point.

●​ time: An RFC 3339 date/time string that specifies the time for which

returned Curb Zones will be valid; if not specified, defaults to the current

time.

Returns: a JSON file whose features are Curb Areas, also containing metadata and

policy fields.

GET /curbs/area/<id>: Fetch a single Curb Area

​ Optional (if not implemented, server should reply with HTTP 501).

​ Parameters:

●​ time: An RFC 3339 date/time string that specifies the time for which

returned Curb Zones will be valid; if not specified, defaults to the current

time.

Returns: a single JSON Curb Area feature.

​

GET /curbs/space: Query Curb Spaces

​ Optional (if not implemented, server should reply with HTTP 501).

Parameters (all optional):

●​ area: The UUID of a Curb Area. If specified, will only return Curb Spaces

contained within this area.

●​ zone: The UUID of a Curb Zone. If specified, will only return Curb Spaces

contained within this area.

●​ min_lat/min_lng/max_lat/max_lng: Specifies a bounding box; if one of

these parameters is specified, all four MUST be. If specified, returns Curb

Spaces that intersect the supplied bounding box.

●​ lat/lng/radius: If one of these parameters is specified, all three MUST be. If

specified, returns only Curb Spaces that are within radius centimeters of the

point identified by lat/lng. Curb Spaces in the returned feature collection

MUST be ordered ascending by distance from the center point.

●​ time: An RFC 3339 date/time string that specifies a particular moment in

time, to be used for availability data (if supplied) If not present, defaults to

the current time.

●​ available: If present, may be true or false, and the API will return only

available or unavailable spaces (respectively). Spaces without availability

information will not be returned. If the available parameter is set but the API

being queried has no availability information whatsoever, the server MAY

return an HTTP 400 error code in response to the request.

Returns: a JSON file whose features are Curb Spaces, also containing a metadata

property

GET /curbs/space/<id>: Fetch a single Curb Space

​ Optional (if not implemented, server should reply with HTTP 501).

​ Parameters:

●​ time: An RFC 3339 date/time string that specifies a particular moment in

time, to be used for availability data (if supplied) If not present, defaults to

the current time.

Returns: a single JSON Curb Space feature.

Status Codes

The following HTTP status codes SHOULD be returned by API servers under certain

conditions. When a non-200 status code is returned, the response body is

implementation-defined, and may or may not be a valid JSON object. Callers should use

the Content-Type header to determine how to process the response. Other status codes

MAY be returned to reflect additional error conditions per the HTTP protocol and RFC

7231.

●​ 200 OK: the request was processed successfully.

●​ 400 Bad Request: when a request is malformed, including the following

conditions:

○​ Invalid parameters (e.g., including radius without lat or lng, or including an

improperly-formatted time parameter)

○​ A request whose bounds are too large for the server to handle (either because

of sheer size or because the returned data would span multiple time zones)

●​ 404 Not Found: when a request is made for an endpoint or for an individual area,

zone, or space that does not exist.

●​ 501 Not Implemented: when a server does not implement a given optional API

endpoint.

Events API
The Events API is a way for real-time and historic events at the curb to be sent to cities.

Events can come from company data feeds, sensors, payments, check-ins, enforcement,

and/or other city data.

Each recorded event is represented by a Curb Event object in an authenticated JSON

endpoint.

Curb Event Objects

A Curb Event object contains the following fields:

●​ event_id: UUID, required. The globally unique identifier of the event that

occurred.

●​ event_type: Curb Event Type, required. The event_type happening for this event.

●​ event_source_category: Enum, required. General category of the source creating

the event.

○​ Sensor, company feed, payment, enforcement, monitor, camera, app, ALPR

●​ source_operator_id: UUID, required. Unique identifier of the entity responsible

for operating the event source.

●​ source_id: UUID, required. Unique identifier of this event source, whether sensor,

vehicle, camera, etc. Allows agencies to connect related Events as they are recorded.

●​ event_location: GeoJSON, required. The geographic point location where the event

occurred.

●​ event_time: Timestamp, required. Time at which the event occurred.

●​ publication_time: Timestamp, required. Time at which the event became available

for consumption by this API.

●​ curb_zone_id: UUID, conditionally required. Unique ID of the Curb Zone where

the event occurred. Required for events that occurred at a known Curb Zone for ALL

event_types.

●​ curb_area_ids: Array of UUIDs, conditionally required. Unique IDs of the Curb

Area where the event occurred. Since Curb Areas can overlap, an event may happen

in more than one. Required for events that occurred in a known Curb Area for these

event_types: enter_area, exit_area, park_start, park_end

●​ curb_space_id: UUID, conditionally required. Unique ID of the Curb Space where

the event occurred. Required for events that occurred at a known Curb Space for

these event_types: park_start, park_end, enter_area, exit_area

●​ provider_id: UUID, optional. Unique ID of the provider responsible for operating

the vehicle at the time of the event, if any.

●​ provider_name: String, optional. Name of the provider responsible for operating

the vehicle, device, or sensor at the time of the event, if any.

●​ sensor_id: UUID, optional. If a sensor was used, the globally unique identifier of

the sensor that recorded the event.

●​ sensor_status: Object, optional. The status of the sensor that reported the event at

the time that the event was reported.

○​ is_commissioned: Boolean, required. Indicates whether the sensor is

currently in a state where it should be reporting data.

○​ is_online: Boolean, required. Indicates whether the sensor is currently online

and reporting data

●​ vehicle_id: String, Optional. Vehicle Identification Number visible on the vehicle

itself

●​ vehicle_length: Integer, conditionally required. Approximate length of the vehicle

that performed the event, in centimeters. Required for sources capable of

determining vehicle length.

●​ vehicle_type: Vehicle Type, conditionally required. Type of the vehicle that

performed the event. Required for sources capable of determining vehicle type

●​ propulsion_types: Array of Propulsion Type, conditionally required. List of

propulsion types used by the vehicle that performed the event. Required for sources

capable of determining vehicle propulsion type.

●​ blocked_lane_types: Array of Lane Type, conditionally required. Type(s) of lane

blocked by the vehicle performing the event. If no lanes are blocked by the vehicle

performing the event, the array should be empty. Required for the following

event_types: park_start

●​ curb_occupants: Array of Curb Occupant, conditionally required. Current

occupants of the Curb Zone. If the sensor is capable of identifying the linear location

of the vehicle, then elements are sorted in ascending order according to the start

property of the linear reference. Otherwise, elements appear in no particular order.

Required for the following event_types: park_start, park_end, scheduled_report

Curb Event Type

event_type. Curb Event Type enumerates the set of possible types of Curb Event. The

values that it can assume are listed below:

●​ comms_lost: communications with the event source were lost

●​ comms_restored: communications with the event source were restored

●​ decommissioned: event source was decommissioned

●​ park_start: a vehicle stopped, parked, or double parked

●​ park_end: a parked vehicle leaving a parked or stopped state and resuming

movement

●​ scheduled_report: event source reported status status at a scheduled interval

●​ enter_area: vehicle enters the relevant geographic area

●​ exit_area: vehicle exits the relevant geographic area

Curb Occupant Objects

A Curb Occupant object represents a specific vehicle’s occupancy in a curb region at a

specific point in time. Curb Occupant objects contain the following fields:

●​ type: Vehicle Type, required. The type of the occupant. When the event source is not

capable of distinguishing vehicle type, this property must take the value

“unspecified.”

●​ length: Float, conditionally required. The approximate length in centimeters of the

vehicle. Required when the event source is capable of determining vehicle length.

●​ linear_location: Array of Float, conditionally required. A two-element array that

specifies the start and end of the occupant’s linear location relative to the start of

the Curb Zone in that order. Required when the event source is capable of

determining the linear location of occupants.

Vehicle Type

Type of vehicle, similar to vehicle_type in MDS. For this CDS release the list will be

developed independently here to accommodate CDS and MDS use cases, while still

aligning to the MDS design principles. In the next major MDS 2.0 release and next CDS

release, alignment between CDS and MDS vehicle types can occur. List:

vehicle_type Description

bicycle A two-wheeled mobility device intended for personal transportation

that can be operated via pedals, with or without a motorized assist

(includes e-bikes, recumbents, and tandems)

cargo_bicycle A two- or three-wheeled bicycle intended for transporting larger,

heavier cargo than a standard bicycle (such as goods or passengers),

with or without motorized assist (includes bakfiets/front-loaders, cargo

trikes, and long-tails)

car A passenger car or similar light-duty vehicle

scooter A standing or seated fully-motorized mobility device intended for one

rider, capable of travel at low or moderate speeds, and suited for

operation in infrastructure shared with motorized bicycles

moped A seated fully-motorized mobility device capable of travel at moderate

or high speeds and suited for operation in general urban traffic

other A device that does not fit in the other categories

Propulsion Type

Propulsion type of the vehicle, similar to propulsion_type in MDS. For this CDS release

the list will be developed independently here to accommodate CDS and MDS use cases,

while still aligning to the MDS design principles. In the next major MDS 2.0 release and

next CDS release, alignment between CDS and MDS propulsion types can occur. List:

propulsion Description

human Pedal or foot propulsion

electric_assist Provides power only alongside human propulsion

electric Contains throttle mode with a battery-powered motor

combustion Contains throttle mode with a gas engine-powered motor

A vehicle may have one or more values from the propulsion, depending on the number of

modes of operation. For example, a scooter that can be powered by foot or by electric motor

would have the propulsion represented by the array ['human', 'electric']. A bicycle with

pedal-assist would have the propulsion represented by the array ['human',

'electric_assist'] if it can also be operated as a traditional bicycle.

Lane Type

Type(s) of lane blocked by the vehicle performing the event. List:

-​ ...

Endpoints

GET /events/event: Query a source for their events

…

GET /events/status: Query a source for their current status

…

Examples

...

Metrics API
Calculations to determine historic dwell time, occupancy, usage, and other aggregated

statistics in curb areas.

An event/transaction at the curb is defined as...

Unit of measure, time, length, etc...

Metrics Methodology

Cities are facilitating access to the curb for different users based on the curb access

priorities of that particular area. The following metrics can be useful in understanding

how curb usage aligns with priorities.

Total Events

Methodology

count[events] for a specific time period

Use Case

Cities use this to determine ‘demand’ for curb space and understand how much activity is

happening at the curb. Seems pretty basic but a lot of cities don’t have this insight or if

they do it’s not current or comprehensive.

Turnover

Methodology

count[events]/hour for a specific time period

Use Case

Used together with Average Dwell Time by cities to understand how long vehicles are

parked at the curb. When evaluated alongside a vehicle type breakdown, cities can see if

the curb space is being used as intended and design better rules for compliance.

Average Dwell Time

Methodology

sum[dwell time] / count[events] for a specific time period

Use Case

Turnover and Average Dwell Time are used together by cities to understand how long

vehicles are parked at the curb. When evaluated alongside a vehicle type breakdown, cities

can see if the curb space is being used as intended and design better rules for compliance.

For example, a city may want to impose a 5 minute time limit for a restaurant pick-up

and drop-off zone if they see that a lot of vehicles are in that space for 30 minutes to help

prioritize the quick pick-up and drop-offs.

Another example would be if a city sees that a space has large vehicles with an average

dwell time of 90 minutes or more they may want to make sure their time limits and

operating hours can accommodate these deliveries so that companies aren’t having to

leave mid-delivery to move their vehicle.

Occupancy Percent

Methodology

sum[dwell time] / total duration for a specific time period

Use Case

Occupancy is a metric from parking that cities would like to apply to curbs. With parking

there’s an optimal occupancy where most of the parking spaces are in-use but there are

enough open spaces for any vehicle to be able to drive up and find a space. Cities are

interested to learn what the optimal occupancy would be for curbs. With so much

competition at the curb, cities want to make sure that any loading zones they create are

being used a lot, but not so much that they’re full and drivers have to double-park

instead.

Curb Productivity Index

Methodology

sum [(vehicle ft x dwell time)] / (curb length x total duration) for a specific time period

●​ end result = number of events per hour for a curb space (or events per day)

●​ normalizes events across vehicle length and dwell time

●​ helps understand ‘occupancy’ as a function of both time and space

●​ where CPI=1 means 100% time and space occupancy of the curb space

Examples of equivalent hourly CPI for a loading zone 100 ft in length

●​ a single 80 ft heavy duty vehicle for 60 minutes, CPI = 0.8

●​ two 40 ft medium duty vehicles for 60 minutes, CPI = 0.8

●​ four 40 ft medium duty vehicles for 30 minutes, CPI = 0.8

●​ 48 x 20ft light duty vehicles with food pickup/drop of 5 minutes each, CPI = 0.8

Use Case

City streets are congested and demand for access to curb space is higher than ever before.

With so many different types of curb users and spaces cities oftentimes have no idea how

to determine curb “performance”. How does a beverage delivery of 30 minutes compare to

a on-demand pickup of 5 minutes?

The Curb Productivity Index is based on a Fehr & Peers study for Uber and SFMTA which

was also used by the Urban Freight Lab for a TNC study in Seattle. We’ve modified the

Curb Productivity Index to normalize events across vehicle types and dwell time so that

cities can review and compare curb “performance” across a diverse range of use cases.

We’ve discussed a “productivity index” with cities but haven’t gotten into details as most

cities are still looking for basic events and occupancy. We’d be curious to hear any feedback

on this concept and ways to improve it.

Metrics Objects

Endpoint: /usage

…

Examples

…

Authentication
How CDS API endpoints are authenticated.

…

IDEAS/DISCUSSIONS

Area to put rough draft ideas, images, and discussions.

Production of CDS Interface and Data Publishing
Need to describe the method of taking data from internal systems and getting it into a

CDS-capable publishing and API platform. How does it affect each party, and what is the

complexity of the tooling needed?

Double-parking / representing travel lanes
One of the use cases we've discussed is identifying double-parked vehicles. Would we

recommend doing this by having two adjacent Curb Zones -- one in the travel lane and

one in the curb lane -- or one that's double-wide? (Maybe this is a use case for

CurbSpaces)? In either case, should we have metadata that defines which lane(s) a given

Curb Zone covers?

Should regulations and areas be separate endpoints?
It is possible that cities will want to refer to curb areas without defining regulations for

them, e.g., if their goal is just capturing events for an investigative study or if they are

only defining a list of loading zones that all have the same regulations. In this case, it

might be easier if we separated the endpoints for curb areas, which defines the geography

and metadata of a particular stretch of curb, from the regulations endpoints which define

who's allowed to do what there, when. The downside is more endpoints and potentially

more work for callers, but it might make the spec cleaner and would make it easier for

those who don't want to use regulations. Direction is now, yes, they are separate

endpoints.

Should CDS contain a full curb regulation spec?
For the initial use case, it is not necessary to be able to define all possible curb regulations

in CDS. However, we know that defining regulations is something that many cities plan to

use CDS for going forward, even after our initial launch. So there are two questions here:​

●​ How much regulations stuff do we put into the initial spec?

●​ How much do we pay attention to future regs extensibility when designing the

initial spec?​

For example, consider pricing. There are many pricing schemes people use for curbs -- e.g.

some meters are $4 for the first hour, $5 for the second, etc.; cities have different

minimum time/price increments; sometimes the amount you pay varies based on the

payment method or other factors; etc. So if we put in a single field called

"price_per_hour", this may make it hard for us to add additional pricing detail in the

future without making a breaking change to the spec. So do we make pricing more

complicated, knowing we won't be using all that stuff initially? Or not?

It is not expected that CDS will be the format used internally to store curb regulations in

a city. The internal storage format is something different, and a subset of that data should

be able to be converted to CDS for publishing out to the public and curb users. CDS is a

data exchange format and a translation layer between internal systems and external

entities using data feeds.

Polygons vs Linear Referencing
Text

Open API
Text

Regulations Hierarchy and Geometry

Note for these 2D curb Zones, drawing an approximation of the asphalt curb area is the

goal. While GPS will be used for showing if a vehicle is in a curb area, GPS can't be relied

on for details, so it's up to the data coming through the Events API (from sensors,

company data feeds, etc) to align curb activity with a curb area. Polygon width should not

be used to determine lane width and instead width is a field in the curb Area part of the

spec.

	 CURB DATA SPECIFICATION
	SPEC DRAFT AND IDEAS
	CDS WORK SHIFTED TO GITHUB
	CURB DATA SPECIFICATION
	Overview
	Work in Progress
	Working Group
	Curb Data Specification APIs
	Curbs API
	Open Discussion Topics for Curb
	
	Curb Zone objects
	
	Curb Zone Fields

	Location Reference objects
	Location Reference Fields

	Policy objects
	

	Time Span objects
	Time Span Fields

	Curb Area objects
	Curb Area Fields

	
	Curb Space objects
	Curb Space Fields

	Metadata objects
	
	Examples
	Get All Curb Zones

	Endpoints
	GET /curbs/zone: Query Curb Zones.
	GET /curbs/zone/<id>: Fetch a single Curb Zone.
	GET /curbs/policy: Query Curb Policies.
	GET /curbs/policy/<id>: Fetch a single Curb Policy.
	GET /curbs/area: Query Curb Areas
	GET /curbs/area/<id>: Fetch a single Curb Area
	​GET /curbs/space: Query Curb Spaces
	GET /curbs/space/<id>: Fetch a single Curb Space

	Status Codes

	Events API
	Curb Event Objects
	Curb Event Type
	Curb Occupant Objects
	Vehicle Type
	Propulsion Type
	Lane Type
	Endpoints
	GET /events/event: Query a source for their events
	GET /events/status: Query a source for their current status

	Examples

	
	Metrics API
	Metrics Methodology
	Total Events
	Turnover
	Average Dwell Time
	Occupancy Percent
	Curb Productivity Index
	Metrics Objects
	Endpoint: /usage
	Examples

	Authentication

	
	IDEAS/DISCUSSIONS
	Production of CDS Interface and Data Publishing
	Double-parking / representing travel lanes
	Should regulations and areas be separate endpoints?
	Should CDS contain a full curb regulation spec?
	Polygons vs Linear Referencing
	Open API
	Regulations Hierarchy and Geometry

