
Le théorème de Rolle et ses conséquences 
 

Le but de ce document est de démontrer le théorème suivant. 
 

Théorème 1 
Soit une fonction  dérivable sur un intervalle . 𝑓 𝐼⊂𝑅

 ∀𝑥∈𝐼, 𝑓' 𝑥( ) = 0⟺𝑓 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒
 ∀𝑥∈𝐼, 𝑓' 𝑥( )≥0⟺𝑓 𝑐𝑟𝑜𝑖𝑠𝑠𝑎𝑛𝑡𝑒

 ∀𝑥∈𝐼, 𝑓' 𝑥( ) ≤ 0⟺𝑓 𝑑é𝑐𝑟𝑜𝑖𝑠𝑠𝑎𝑛𝑡𝑒
 ∀𝑥∈𝐼, 𝑓' 𝑥( ) > 0⟹𝑓 𝑒𝑠𝑡 𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑚𝑒𝑛𝑡 𝑐𝑟𝑜𝑖𝑠𝑠𝑎𝑛𝑡𝑒

 ∀𝑥∈𝐼, 𝑓' 𝑥( ) < 0⟹𝑓 𝑒𝑠𝑡 𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑚𝑒𝑛𝑡 𝑑é𝑐𝑟𝑜𝑖𝑠𝑠𝑎𝑛𝑡𝑒
 
Pour démontrer ce théorème, nous allons démontrer plusieurs résultats successivement même si nous 
admettrons le théorème des bornes qui se démontre par des arguments topologiques (qui nous éloigneraient 
trop du programme de terminale). 
 

Théorème des bornes 
Soient  tels que . Soit une fonction  continue sur , alors est bornée et atteint ses 𝑎, 𝑏∈𝑅 𝑎 < 𝑏 𝑓: 𝑎; 𝑏[ ]→𝑅 𝑎; 𝑏[ ] 𝑓
bornes. Autrement dit, il existe des réels  tels que 𝑥

𝑚
, 𝑥

𝑀
∈ 𝑎; 𝑏[ ]

 𝑓 𝑥
𝑚( ) = 𝑚

 𝑓 𝑥
𝑀( ) = 𝑀

 ∀𝑥∈ 𝑎, 𝑏[ ], 𝑚≤𝑓 𝑥( )≤𝑀
 

Proposition 1 
Soit une fonction  dérivable sur un intervalle  et soit  un nombre intérieur à I. Si  admet un 𝑓 𝐼⊂𝑅 𝑥

0
𝑓

extremum local en  (maximum ou minimum), alors 𝑥
0

 𝑓' 𝑥
0( ) = 0

 
Remarque 
Un nombre  est intérieur à I s’il existe un réel  tel que  𝑥

0
ε > 0 ]𝑥

0
− ε; 𝑥

0
+ ε[⊂ 𝐼

 
Preuve 
Quitte à remplacer  par , on peut supposer que  admet un maximum local en  donc il existe un intervalle 𝑓 − 𝑓 𝑓 𝑥

0
 dont  est un nombre intérieur tel que 𝐽⊂𝐼 𝑥

0
 ∀𝑥∈𝐽, 𝑓 𝑥( ) ≤ 𝑓 𝑥

0( )⟺𝑓 𝑥( ) − 𝑓 𝑥
0( )≤0

Soit , 𝑥∈𝐽\ 𝑥
0{ }

 𝑥 < 𝑥
0
⟺𝑥 − 𝑥

0
< 0⟹

𝑓 𝑥( )−𝑓 𝑥
0( )

𝑥−𝑥
0

≥0

Or,  est dérivable en  donc, par passage à la limite dans l’inégalité précédente, 𝑓 𝑥
0

 
𝑓 𝑥( )−𝑓 𝑥

0( )
𝑥−𝑥

0
( ) = 𝑓' 𝑥

0( )≥0

De la même façon, 

 𝑥 > 𝑥
0
⟺𝑥 − 𝑥

0
> 0⟹

𝑓 𝑥( )−𝑓 𝑥
0( )

𝑥−𝑥
0

≤ 0

Or,  est dérivable en  donc, par passage à la limite dans l’inégalité précédente, 𝑓 𝑥
0

 
𝑓 𝑥( )−𝑓 𝑥

0( )
𝑥−𝑥

0
( ) = 𝑓' 𝑥

0( ) ≤ 0

On en déduit que, nécessairement, 

 𝑓' 𝑥
0( ) = 0
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Proposition 2 
Si une fonction  est constante sur un intervalle , alors 𝑓 𝐼⊂𝑅

 ∀𝑥∈𝐼, 𝑓' 𝑥( ) = 0
 
 
 
 
Preuve 
Soient  et  tels que ,  étant constante, 𝑥∈𝐼 ℎ ∈  𝑅 𝑥 + ℎ∈𝐼 𝑓

 𝑓 𝑥+ℎ( )−𝑓(𝑥)
𝑥+ℎ−𝑥 = 0

Par ailleurs, 

 𝑓 𝑥+ℎ( )−𝑓(𝑥)
𝑥+ℎ−𝑥( ) = 𝑓' 𝑥( )

Donc, nécessairement, 

 𝑓' 𝑥( ) = 0
 
Remarque 
La réciproque sera démontrée un peu plus loin à l’aide du théorème des accroissement finis. 
 

Théorème de Rolle 
Soient  tels que . Soit une fonction  continue sur  et dérivable sur  telle que 𝑎, 𝑏∈𝑅 𝑎 < 𝑏 𝑓: 𝑎; 𝑏[ ] → 𝑅 𝑎; 𝑏[ ] ]𝑎; 𝑏[

 𝑓 𝑎( ) = 𝑓(𝑏)
Alors il existe  tel que 𝑐 ∈]𝑎; 𝑏[

 𝑓' 𝑐( ) = 0
 
Preuve 
D’après le théorème des bornes,  admet un minimum et un maximum globaux sur , notés  et  𝑓 [𝑎; 𝑏] 𝑚 𝑀
respectivement. 
Si , alors  est constante sur , donc  est nulle sur tout  d’où l’existence de . 𝑚 = 𝑀 𝑓 [𝑎; 𝑏] 𝑓' ]𝑎; 𝑏[ 𝑐
Si , sachant que , l’un au moins de ces deux extrema est atteint en un point  appartenant à 𝑚 < 𝑀 𝑓(𝑎) = 𝑓(𝑏) 𝑐
l’intervalle ouvert . Ainsi,  est un extremum local intérieur à  donc  d’après la proposition ]𝑎; 𝑏[ 𝑐 [𝑎; 𝑏] 𝑓'(𝑐) = 0
1. 
 

Théorème des accroissements finis 
Soient  tels que . Soit une fonction  continue sur  et dérivable sur  𝑎, 𝑏∈𝑅 𝑎 < 𝑏 𝑓: 𝑎; 𝑏[ ]→𝑅 𝑎; 𝑏[ ] ]𝑎; 𝑏[
Alors il existe  tel que 𝑐 ∈]𝑎; 𝑏[

 𝑓 𝑏( )−𝑓(𝑎)
𝑏−𝑎 = 𝑓' 𝑐( )

 
Preuve 
Soit  la fonction définie sur  par φ [𝑎; 𝑏]

 φ 𝑥( ) = 𝑓 𝑥( ) − 𝑓 𝑎( ) − 𝑓 𝑏( )−𝑓(𝑎)
𝑏−𝑎( ) 𝑥 − 𝑎( )

φ est continue sur  et dérivable sur  en tant que produit et sommes de fonctions continues sur  [𝑎; 𝑏] ]𝑎; 𝑏[ [𝑎; 𝑏]
et dérivables sur . Par ailleurs, ]𝑎; 𝑏[

 φ 𝑎( ) = 𝑓 𝑎( ) − 𝑓 𝑎( ) − 𝑓 𝑏( )−𝑓 𝑎( )
𝑏−𝑎( ) 𝑎 − 𝑎( ) = 0

 φ 𝑏( ) = 𝑓 𝑏( ) − 𝑓 𝑎( ) − 𝑓 𝑏( )−𝑓 𝑎( )
𝑏−𝑎( ) 𝑏 − 𝑎( ) = 𝑓 𝑏( ) − 𝑓 𝑎( ) − 𝑓 𝑏( ) − 𝑓 𝑎( )( ) = 0

D’après le théorème de Rolle, il existe donc  tel que 𝑐∈]𝑎; 𝑏[
 φ' 𝑐( ) = 0 (1)

Or, 

 ∀𝑥 ∈]𝑎; 𝑏[, φ' 𝑥( ) = 𝑓' 𝑥( ) − 𝑓 𝑏( )−𝑓(𝑎)
𝑏−𝑎

Donc 

2  

� 🙘  



 1( )⟺𝑓' 𝑐( ) − 𝑓 𝑏( )−𝑓 𝑎( )
𝑏−𝑎 = 0⟺𝑓' 𝑐( ) = 𝑓 𝑏( )−𝑓 𝑎( )

𝑏−𝑎
 
On peut dès lors démontrer le théorème 1. 
 
 
 
 
 
Preuve du théorème 1 
▪​ Montrons que 

 ∀𝑥∈𝐼, 𝑓' 𝑥( ) = 0⟺𝑓 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒
Le sens indirect a été montré à la proposition 2. Montrons le sens direct et supposons que 

 ∀𝑥∈𝐼, 𝑓' 𝑥( ) = 0
Soient  tels que . D’après le théorème des accroissements finis, il existe  tel que 𝑎, 𝑏∈𝐼 𝑎≠𝑏 𝑐 ∈]𝑎, 𝑏[

 𝑓 𝑏( )−𝑓(𝑎)
𝑏−𝑎 = 𝑓' 𝑐( )

Or, par hypothèse,  donc nécessairement 𝑓' 𝑐( ) = 0
 𝑓 𝑏( ) − 𝑓 𝑎( ) = 0⟺𝑓 𝑎( ) = 𝑓 𝑏( )

Donc  est constante. 𝑓
▪​ Montrons que 

 ∀𝑥∈𝐼, 𝑓' 𝑥( )≥0⟺𝑓 𝑐𝑟𝑜𝑖𝑠𝑠𝑎𝑛𝑡𝑒
Sens direct 
Supposons que 

 ∀𝑥∈𝐼, 𝑓' 𝑥( )≥0
Soient  tels que . D’après le théorème des accroissements finis, il existe  tel que 𝑎, 𝑏∈𝐼 𝑎 < 𝑏 𝑐 ∈]𝑎; 𝑏[

 𝑓 𝑏( )−𝑓(𝑎)
𝑏−𝑎 = 𝑓' 𝑐( )

Or,  et  donc nécessairement 𝑓' 𝑐( )≥0 𝑏 − 𝑎 > 0
 𝑓 𝑏( ) − 𝑓 𝑎( ) ≥ 0

Donc  est croissante. 𝑓
 
Sens indirect 
Supposons que  soit croissante sur . Soient  et  tels que , 𝑓 𝐼 𝑥∈𝐼 ℎ ∈  𝑅 𝑥 + ℎ∈𝐼

 𝑓 𝑥+ℎ( )−𝑓 𝑥( )
𝑥+ℎ−𝑥 = 𝑓 𝑥+ℎ( )−𝑓 𝑥( )

ℎ
Si , alors  et par croissance de , ℎ < 0 𝑥 + ℎ < 𝑥 𝑓

 𝑓 𝑥 + ℎ( ) − 𝑓 𝑥( ) < 0⟺ 𝑓 𝑥+ℎ( )−𝑓 𝑥( )
ℎ ≥0

Si , alors  et par croissance de , ℎ > 0 𝑥 + ℎ > 𝑥 𝑓
 𝑓 𝑥 + ℎ( ) − 𝑓 𝑥( ) > 0⟺ 𝑓 𝑥+ℎ( )−𝑓 𝑥( )

ℎ ≥0
Dans tous les cas, 

 𝑓 𝑥+ℎ( )−𝑓 𝑥( )
ℎ ≥0

Par ailleurs, 

 𝑓 𝑥+ℎ( )−𝑓 𝑥( )
𝑥+ℎ−𝑥( ) = 𝑓' 𝑥( )

Donc, nécessairement, 

 𝑓' 𝑥( )≥0
 
Les autres cas du théorème se démontrent de la même manière. 
 

Remarque 
Une fonction peut être strictement croissante mais posséder une dérive qui s’annule. C’est le cas de la fonction 
cube qui est strictement croissante mais dont la dérivée s’annule en 0. 
Pour obtenir l’équivalence, il faut que les racines de la dérivée soient isolées. 
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Pour aller plus loin 
Le théorème de Rolle et le théorème des accroissements finis ont des prolongements très importants en analyse 
tels que l’inégalité des accroissements finis, le théorème des accroissement finis généralisés, la formule de 
Taylor-Lagrange, le théorème de Darboux… 
 

Définition 1 
La borne supérieure d’une partie d’un ensemble ordonné est le plus petit de ses majorants. 
La borne inférieure d’une partie d’un ensemble ordonné est le plus grand de ses minorants. 

 
Remarque 
De telles bornes n’existent pas toujours mais elles sont uniques lorsqu’elles existent. Ces bornes sont notées 
respectivement  et . 𝑠𝑢𝑝 𝑖𝑛𝑓
 

Inégalité des accroissements finis 
Soient  tels que . Soit une fonction  continue sur  et dérivable sur . Si 𝑎, 𝑏∈𝑅 𝑎 < 𝑏 𝑓: 𝑎; 𝑏[ ]→𝑅 𝑎; 𝑏[ ] ]𝑎; 𝑏[

 𝑘 = 𝑓'(𝑐)| | <+ ∞
Alors 

 ∀𝑥, 𝑦∈ 𝑎; 𝑏[ ], 𝑓 𝑥( ) − 𝑓 𝑦( )| |≤𝑘 𝑥 − 𝑦| |

 
Preuve 
Soient  𝑥, 𝑦∈ 𝑎; 𝑏[ ]
Si , l’inégalité est clairement vérifiée. 𝑥 = 𝑦
Si , on peut appliquer le théorème des accroissements finis sur . Il existe donc un réel  tel que 𝑥≠𝑦 [𝑥; 𝑦] 𝑐∈]𝑥; 𝑦[

 𝑓 𝑥( )−𝑓(𝑦)
𝑥−𝑦 = 𝑓' 𝑐( )⟺𝑓 𝑥( ) − 𝑓 𝑦( ) = 𝑓' 𝑐( )(𝑥 − 𝑦)⟹ 𝑓 𝑥( ) − 𝑓 𝑦( )| | = 𝑓' 𝑐( )| | 𝑥 − 𝑦| |

Or, 

 𝑓' 𝑐( )| |≤𝑘
Donc 

 𝑓 𝑥( ) − 𝑓 𝑦( )| |≤𝑘 𝑥 − 𝑦| |
 

Théorème des accroissements finis généralisés 
Soient  tels que . Soit deux fonctions  et  définies et continues sur  et dérivable sur  𝑎, 𝑏∈𝑅 𝑎 < 𝑏 𝑓 𝑔 𝑎; 𝑏[ ] ]𝑎; 𝑏[.
Il existe  tel que 𝑐∈]𝑎; 𝑏[

 𝑓 𝑏( ) − 𝑓 𝑎( )( )𝑔' 𝑐( ) = 𝑔 𝑏( ) − 𝑔 𝑎( )( )𝑓' 𝑐( )

 
Preuve 
Considérons la fonction  définie sur  par φ 𝑎; 𝑏[ ]

 φ 𝑥( ) = 𝑓 𝑏( ) − 𝑓 𝑎( )( ) 𝑔 𝑥( ) − 𝑔 𝑎( )( ) − 𝑔 𝑏( ) − 𝑔 𝑎( )( ) 𝑓 𝑥( ) − 𝑓 𝑎( )( )
La fonction  est continue sur  et dérivable sur  en tant que somme et produit de fonctions continues φ 𝑎; 𝑏[ ] ]𝑎; 𝑏[
sur  et dérivables sur  𝑎; 𝑏[ ] ]𝑎; 𝑏[

 ∀𝑥∈]𝑎; 𝑏[, φ' 𝑥( ) = 𝑓 𝑏( ) − 𝑓 𝑎( )( )𝑔' 𝑥( ) − 𝑔 𝑏( ) − 𝑔 𝑎( )( )𝑓'(𝑥)
Par ailleurs, 

 φ 𝑎( ) = φ 𝑏( ) = 0
Donc, d’après le théorème de Rolle, il existe un réel  tel que 𝑐∈]𝑎; 𝑏[

 φ' 𝑐( ) = 0⟺ 𝑓 𝑏( ) − 𝑓 𝑎( )( )𝑔' 𝑐( ) − 𝑔 𝑏( ) − 𝑔 𝑎( )( )𝑓' 𝑐( ) = 0⟺ 𝑓 𝑏( ) − 𝑓 𝑎( )( )𝑔' 𝑐( ) = 𝑔 𝑏( ) − 𝑔 𝑎( )( )𝑓' 𝑐( )
 

Règle de L’Hospital 
Soient . Soit deux fonctions  et  définies et continues sur  et dérivable sur  telles que 𝑎∈𝑅 𝑓 𝑔 𝑎; 𝑏[ ] ]𝑎; 𝑏[
▪​  𝑓 𝑎( ) = 𝑔 𝑎( ) = 0
▪​  ne s’annule pas au voisinage de  sauf éventuellement en  𝑔' 𝑎 𝑎

 𝑆𝑖 𝑓'(𝑥)
𝑔'(𝑥)( )  𝑒𝑥𝑖𝑠𝑡𝑒,  𝑎𝑙𝑜𝑟𝑠 𝑓(𝑥)

𝑔(𝑥)( )  𝑒𝑥𝑖𝑠𝑡𝑒 𝑒𝑡 𝑐𝑒𝑠 𝑑𝑒𝑢𝑥 𝑙𝑖𝑚𝑖𝑡𝑒𝑠 𝑠𝑜𝑛𝑡 é𝑔𝑎𝑙𝑒𝑠.
 
Preuve 
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Si  ne s’annule pas au voisinage de ,  ne peut s’annuler au voisinage de  sauf en  en raison du théorème de 𝑔' 𝑎 𝑔 𝑎 𝑎
Rolle donc il existe un intervalle  non vide contenant  tel que 𝐽 ⊂ 𝑎; 𝑏[ ] 𝑎

 ∀𝑥∈𝐽\ 𝑎{ }, 𝑔 𝑥( )≠0 𝑒𝑡 𝑔' 𝑥( )≠0
Soit , d’après le théorème des accroissements généralisés, il existe  tel que 𝑥∈𝐽\ 𝑎{ } 𝑐∈]𝑎; 𝑥[

 𝑓 𝑥( ) − 𝑓 𝑎( )( )𝑔' 𝑐( ) = 𝑔 𝑥( ) − 𝑔 𝑎( )( )𝑓' 𝑐( )⟺𝑓 𝑥( )𝑔' 𝑐( ) = 𝑔 𝑥( )𝑓' 𝑐( )⟺ 𝑓 𝑥( )
𝑔 𝑥( ) = 𝑓'(𝑐)

𝑔'(𝑐)
Lorsque  tend vers ,  tend nécessairement vers  𝑥 𝑎 𝑐 𝑎
Donc 

 𝑓(𝑥)
𝑔(𝑥)( ) = 𝑓'(𝑥)

𝑔'(𝑥)( ) 
 
Remarque 
On a restreint le théorème à une limite à droite de  mais on pourrait avoir le même raisonnement à gauche de 𝑎

 𝑎
 

Théorème de Darboux 
Si une fonction  est dérivable sur un intervalle  alors  est un intervalle. 𝑓 𝐼⊂𝑅 𝑓'(𝐼)

 
Preuve 
Soient  tels que . Soit  compris entre  et . Montrons qu’il existe  tel que  𝑎, 𝑏∈𝐼 𝑎 < 𝑏 λ 𝑓'(𝑎) 𝑓'(𝑏) 𝑐 ∈ 𝐼 𝑓’(𝑐) = λ
Quitte à remplacer  par , on peut supposer que 𝑓 − 𝑓

 𝑓’ 𝑎( ) > λ > 𝑓’(𝑏)
En considérant la fonction , on se ramène au cas où 𝑔: 𝑥⟼𝑓(𝑥) − λ𝑥

 𝑔’ 𝑎( ) > 0 > 𝑔’(𝑏)
Montrons qu’il existe  tel que 𝑐 ∈]𝑎; 𝑏[

 𝑔’(𝑐) = 0⟺𝑓’(𝑐) = λ
1er cas :  𝑔 𝑎( ) = 𝑔(𝑏)
D’après le théorème de Rolle, il existe  tel que 𝑐 ∈]𝑎; 𝑏[

 𝑔' 𝑐( ) = 0
2e cas :  𝑔 𝑎( )≠𝑔(𝑏)
Considérons les fonctions  et  définies sur  par 𝑢 𝑣 𝑎; 𝑏[ ]

 𝑢 𝑥( ) = { 𝑔 𝑥( )−𝑔(𝑎)
𝑥−𝑎  𝑠𝑖 𝑥∈]𝑎; 𝑏] 𝑔' 𝑎( ) 𝑠𝑖 𝑥 = 𝑎  𝑒𝑡 𝑣 𝑥( ) = { 𝑔 𝑥( )−𝑔(𝑏)

𝑥−𝑏  𝑠𝑖 𝑥∈[𝑎; 𝑏[ 𝑔' 𝑏( ) 𝑠𝑖 𝑥 = 𝑏  
Les fonctions  et  sont continues sur  et 𝑢 𝑣 [𝑎, 𝑏]

 𝑢 𝑏( ) = 𝑣(𝑎)
Remarquons que 

 𝑢 𝑎( )𝑢 𝑏( )𝑣 𝑎( )𝑣 𝑏( ) = 𝑔' 𝑎( )𝑢2 𝑏( )𝑔' 𝑏( ) < 0
Donc​ ​ ​ ​ ou​ ​  𝑢 𝑎( )𝑢 𝑏( ) < 0 𝑣 𝑎( )𝑣 𝑏( ) < 0
Dans le premier cas,  et  ne sont pas de même signe ni égaux à 0 donc, d’après le théorème des 𝑢 𝑎( ) 𝑢 𝑏( )
valeurs intermédiaires, il existe  tel que 𝑦 ∈]𝑎; 𝑏[

 𝑢 𝑦( ) = 0⟺𝑔(𝑦) = 𝑔(𝑎)
D’après le théorème de Rolle, il existe donc  tel que 𝑐 ∈]𝑎; 𝑦[⊂]𝑎; 𝑏[

 𝑔' 𝑐( ) = 0
Dans le deuxième cas,  et  ne sont pas de même signe ni égaux à 0 donc, d’après le théorème des 𝑣 𝑎( ) 𝑣 𝑏( )
valeurs intermédiaires, il existe  tel que 𝑧 ∈]𝑎; 𝑏[

 𝑣 𝑧( ) = 0⟺𝑔(𝑧) = 𝑔(𝑏)
D’après le théorème de Rolle, il existe donc  tel que 𝑐 ∈]𝑧; 𝑏[⊂]𝑎; 𝑏[

 𝑔' 𝑐( ) = 0
Dans tous les cas, il existe  tel que 𝑐 ∈]𝑎; 𝑏[

 𝑔’(𝑐) = 0⟺𝑓’(𝑐) = λ
Remarque 
Il existe une autre démonstration (très courte) qui utilise des propriétés topologiques sur la connexité mais qui 
déborderait complètement du cours de terminale. 
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Formule de Taylor-Lagrange 

Soient  tels que . Soit . Soit une fonction  de classe  sur  telle que  𝑎, 𝑏∈𝑅 𝑎 < 𝑏 𝑛∈𝑁* 𝑓: 𝑎; 𝑏[ ]→𝑅 𝐶𝑛 𝑎; 𝑏[ ] 𝑓 𝑛+1( )

existe sur . ]𝑎; 𝑏[
Il existe  tel que 𝑐∈]𝑎; 𝑏[

 𝑓 𝑏( ) = 𝑓 𝑎( ) + 𝑏 − 𝑎( )𝑓' 𝑎( ) + 𝑏−𝑎
2! 𝑓'' 𝑎( ) + … + 𝑏−𝑎( )𝑛

𝑛! 𝑓 𝑛( ) 𝑎( ) + 𝑏−𝑎( )𝑛+1

𝑛+1( )! 𝑓 𝑛+1( ) 𝑐( )⏟
𝑟𝑒𝑠𝑡𝑒 𝑑𝑒 𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑒

 
Remarques 

▪​  désigne la dérivée énième de  : elle est obtenue en dérivant  fois la fonction  et ses dérivées 𝑓 𝑛( ) 𝑓 𝑛 𝑓
successives. 

▪​ Une fonction est de classe  si elle est continue et dérivable  fois et si chacune de ses dérivées successives 𝐶𝑛 𝑛
est continue. 

 
 
Preuve 
Considérons la fonction  définie sur  par φ 𝑎; 𝑏[ ]

 φ 𝑥( ) = 𝑓 𝑏( ) − 𝑓 𝑥( ) − 𝑏 − 𝑥( )𝑓' 𝑥( ) − 𝑏−𝑥( )2

2! 𝑓'' 𝑥( ) −...− 𝑏−𝑥( )𝑛

𝑛! 𝑓 𝑛( ) 𝑥( ) − 𝐴 𝑏−𝑥( )𝑛+1

𝑛+1( )!
Remarquons que  et choisissons  tel que  (c’est possible car ) φ 𝑏( ) = 0 𝐴∈𝑅 φ 𝑎( ) = 0 𝑎≠𝑏
La fonction  est continue sur  et dérivable sur  en tant que somme de fonctions continues sur  φ 𝑎; 𝑏[ ] ]𝑎; 𝑏[ 𝑎; 𝑏[ ]
et dérivables sur  ]𝑎; 𝑏[

 ∀𝑥∈]𝑎; 𝑏[, φ' 𝑥( ) =− 𝑓' 𝑥( ) + 𝑓' 𝑥( ) − 𝑏 − 𝑥( )𝑓'' 𝑥( ) + 2 𝑏−𝑥( )
2! 𝑓'' 𝑥( ) − 𝑏−𝑥( )2

2! 𝑓 3( ) 𝑥( ) +...

 … + 𝑛 𝑏−𝑥( )𝑛−1

𝑛! 𝑓 𝑛( ) 𝑥( ) − 𝑏−𝑥( )𝑛

𝑛! 𝑓 𝑛+1( ) 𝑥( ) + 𝐴 𝑛+1( ) 𝑏−𝑥( )𝑛

𝑛+1( )!
Donc, en remarquant que tous les termes s’annulent sauf les deux derniers, 

 φ' 𝑥( ) =− 𝑏−𝑥( )𝑛

𝑛! 𝑓 𝑛+1( ) 𝑥( ) + 𝐴 𝑏−𝑥( )𝑛

𝑛!
D’après le théorème de Rolle, il existe un réel  tel que 𝑐 ∈]𝑎; 𝑏[

 φ' 𝑐( ) = 0⟺0 =− 𝑏−𝑐( )𝑛

𝑛! 𝑓 𝑛+1( ) 𝑐( ) + 𝐴 𝑏−𝑐( )𝑛

𝑛! ⟺𝐴 = 𝑓 𝑛+1( ) 𝑐( )
Remarquons que 

φ 𝑎( ) = 0⟺0 = 𝑓 𝑏( ) − 𝑓 𝑎( ) − 𝑏 − 𝑎( )𝑓' 𝑥( ) − 𝑏−𝑎( )2

2! 𝑓'' 𝑎( ) −...− 𝑏−𝑎( )𝑛

𝑛! 𝑓 𝑛( ) 𝑎( ) − 𝑏−𝑎( )𝑛+1

𝑛+1( )! 𝑓 𝑛+1( ) 𝑐( )⟺𝑓 𝑏( ) = 𝑓 𝑎( ) + 𝑏(
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