Le théoréme de Rolle et ses conséquences

Le but de ce document est de démontrer le théoréme suivant.

Théoréme 1
Soit une fonction f dérivable sur un intervalle ICR.

Vx€El, f'(x) = 0Sf constante
Vx€l, f (x)=0<f croissante
Vx€l, f (x) < 0&f décroissante

Vx€l, f (x) > 0=f est strictement croissante

Vx€El, f (x) < 0=f est strictement décroissante

Pour démontrer ce théoréme, nous allons démontrer plusieurs résultats successivement méme si nous
admettrons le théoreme des bornes qui se démontre par des arguments topologiques (qui nous éloigneraient
trop du programme de terminale).

Théoréme des bornes
Soient a, bER tels que a < b. Soit une fonction f:
bornes. Autrement dit, il existe des réels X X, €

[a; b]—=R continue sur [a; b], alors fest bornée et atteint ses
[a; b] tels que

f(x,)=m
f X,)= M

Vx€[a, b], n<f(x)<M

Proposition 1
Soit une fonction f dérivable sur un intervalle /ICR et soit X, un nombre intérieur a I. Si f admet un

extremum local en X, (maximum ou minimum), alors

f'(xo) =0

Remarque
Un nombre X, est intérieur a [ sl existe un réel € > 0 tel que ]x0 —&x, + [

Preuve
Quitte a remplacer f par — f, on peut supposer que f admet un maximum local en X, donc il existe un intervalle

Jcl dont X, estun nombre intérieur tel que
vxe], f(x) < f(x,)=f () = f(x,)<0

Soit xE]\{xO},

Feo-1(x,)

X—X
0

Or, f est dérivable en X, donc, par passage a la limite dans I'inégalité précédente,

() — e

0

=0

x<x0<=>x—x0<0=>

De la méme facon,
Fe0-1(x,) -

x>xex —x > 0=
0 0 x—x,

Or, f est dérivable en X, dong, par passage a la limite dans I'inégalité précédente,

(%);Z(XO)) - f'(xo) <0

On en déduit que, nécessairement,



Proposition 2
Si une fonction f est constante sur un intervalle /ICR, alors

vxel f (x) = 0

Preuve

Soientx€l et h € R tels que x + h€l, f étant constante,
fet-f@) _
x+h—x

fat—f)\ _ ¢
(T) =f()

Par ailleurs,

Donc, nécessairement,
f(x)=0

Remarque
La réciproque sera démontrée un peu plus loin a I'aide du théoreme des accroissement finis.

Théoréme de Rolle
Soient a, bER tels que a < b. Soit une fonction f: [a; b] = R continue sur [a; b] et dérivable sur Ja; b[ telle que
f(a)= f(b)

Alors il existe ¢ €]a; b[ tel que

f(Q)=0

Preuve

D’apres le théoreme des bornes, f admet un minimum et un maximum globaux sur [a; b], notés m et M
respectivement.

Sim = M, alors f est constante sur [a; b], donc f' est nulle sur tout ]a; b[ d’ou I'existence de c.

Sim < M, sachant que f(a) = f(b), 'un au moins de ces deux extrema est atteint en un point c appartenant a
I'intervalle ouvert ]a; b[. Ainsi, ¢ est un extremum local intérieur a [a; b] donc f'(c) = 0 d’apres la proposition
1.

Théoréme des accroissements finis
Soient a, bER tels que a < b. Soit une fonction f: [a; b]—R continue sur [a; b] et dérivable sur ]a; b][
Alors il existe ¢ €]a; b[ tel que
fD—f@ _
e =1

Preuve
Soit ¢ la fonction définie sur [a; b] par

b —
000 = f() — f(@) - ({ELL)x - o)
¢ est continue sur [a; b] et dérivable sur ]a; b[ en tant que produit et sommes de fonctions continues sur [a; b]
et dérivables sur ]a; b[. Par ailleurs,

0@ = f@- f@- (L9LY)@ - w=0
o(b) = f(b) — f(@ — (LELL)b - &) = F(b) - f(@ — (F(B) — f(@)= 0

D’apreés le théoréme de Rolle, il existe donc c€]a; b[ tel que

¢ ()=0(1)
Or,

vx €]a; b, ¢ () = f (x) — ﬂ%l

Donc
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(Def () - UL = g f () = LO=L@

On peut des lors démontrer le théoreme 1.

Preuve du théoréeme 1
= Montrons que

Vx€l f (x) = 0&f constante
Le sens indirect a été montré a la proposition 2. Montrons le sens direct et supposons que
Vxel f(x)= 0
Soient a, b€l tels que a#b. D’apres le théoreme des accroissements finis, il existe ¢ €]a, b[ tel que

LO-1@ - £ (o)

Or, par hypothese, f'(c) = 0 donc nécessairement
fb) = f(a) = 0=f(a) = f(b)
Donc f est constante.
= Montrons que

Vx€El, f (x)=0&f croissante
Sens direct
Supposons que
vx€el f (x)=0
Soient a, b€l tels que a < b. D’aprés le théoréme des accroissements finis, il existe ¢ €]a; b[ tel que

LO1@ - £ (o)

Or, f (c)=0etb — a > 0 donc nécessairement

fb) = f(@)=0

Donc f est croissante.

Sens indirect

Supposons que f soit croissante sur I. Soient x€l eth € R tels quex + h€l,
fOeth)=f(x) _ fxeth)—f(x)

x+h—x h
Sih < 0,alors x + h < xetpar croissance de f,

flx + h) = f(x) < 0 LEHLE >0
Sih > 0,alorsx + h > x et par croissance de f,
fx + h) = f(x)> 0[BT 50

Dans tous les cas,
[ —f() <
. >

Par ailleurs,
+h)— '
(L) = f
Donc, nécessairement,
f (x)=0

Les autres cas du théoréme se démontrent de la méme maniére.

Remarque

Une fonction peut étre strictement croissante mais posséder une dérive qui s’annule. C’est le cas de la fonction
cube qui est strictement croissante mais dont la dérivée s’annule en 0.

Pour obtenir I’équivalence, il faut que les racines de la dérivée soient isolées.
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Pour aller plus loin

Le théoréme de Rolle et le théoréme des accroissements finis ont des prolongements tres importants en analyse
tels que l'inégalité des accroissements finis, le théoreme des accroissement finis généralisés, la formule de
Taylor-Lagrange, le théoreme de Darboux...

Définition 1
La borne supérieure d'une partie d’'un ensemble ordonné est le plus petit de ses majorants.
La borne inférieure d’une partie d'un ensemble ordonné est le plus grand de ses minorants.

Remarque
De telles bornes n’existent pas toujours mais elles sont uniques lorsqu’elles existent. Ces bornes sont notées
respectivement sup et inf.

Inégalité des accroissements finis
Soient a, bER tels que a < b. Soit une fonction f: [a; b]=R continue sur [a; b] et dérivable sur ]a; b|. Si
k=I1f()] <+
Alors
Vx, y€la; b], |f(x) = f)|<klx — yl

Preuve

Soient x, y€[a; b]

Six = y,l'inégalité est clairement vérifiée.

Si x#y, on peut appliquer le théoréme des accroissements finis sur [x; y]. Il existe donc un réel c€]x; y[ tel que
L = foyof() - f0) = f @& = »=1f0) = fO) = |f ©|Ix = vl

Or,

If (©]=k
If G — fO)I=klx — yl

Donc

Théoréme des accroissements finis généralisés
Soient a, bER tels que a < b. Soit deux fonctions f et g définies et continues sur [a; b] et dérivable sur ]a; b[.
Il existe c€]a; b|[ tel que

(Fb) = f(@)g (©) = (g(b) — g(@)f ()

Preuve
Considérons la fonction ¢ définie sur [a; b] par

o) = (f(b) = f(@)(g(x) = g(a)) = (g(b) = g(@)(f(x) — f(a))
La fonction ¢ est continue sur [a; b] et dérivable sur ]a; b[ en tant que somme et produit de fonctions continues
sur [a; b] et dérivables sur Ja; b[

vxela; b, @ (x) = (f(b) — f(@)g @) — (g(b) — g(@)f'(x)

e(@)= @b)=10
Donc, d’apres le théoréme de Rolle il existe un réel cE]a b[ tel que

¢ () = 0=(f(b) = £(@)g () — (g(b) — g@)f () = 0=(F(B) — f(@)g (c) = (g(b) = g(@)f ()

Par ailleurs,

Regle de L'Hospital
Soient a€R. Soit deux fonctions f et g définies et continues sur [a; b] et dérivable sur ]a; b[ telles que
" f@=g@=0

* g'nes’annule pas au voisinage de a sauf éventuellement en a

Si (fg g ) existe, alors (%) existe et ces deux limites sont égales.

Preuve
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Si g' ne s’annule pas au voisinage de a, g ne peut s’annuler au voisinage de a sauf en a en raison du théoreme de
Rolle donc il existe un intervalle /] < [a; b] non vide contenant a tel que

vxe/\{a}, g(x)#0 et g'(x);&O
Soit x€J\{a}, d’aprés le théoreme des accroissements généralisés, il existe c€]a; x[ tel que

()~ £(@)9(©) = (9(0) — J(@)f ()= @)g (©) = gOf (=L = L.

g
Lorsque x tend vers a, ¢ tend nécessairement vers a
Donc
(f(X) ) — (f'(X) )
9(x) g'®)
Remarque

On a restreint le théoréme a une limite a droite de a mais on pourrait avoir le méme raisonnement a gauche de
a

Théoréme de Darboux
Si une fonction f est dérivable sur un intervalle /ICR alors f'(I) est un intervalle.

Preuve
Soient a, bel tels que a < b. Soit A compris entre f'(a) et f'(b). Montrons qu'’il existe ¢ € I tel que f’(c) = A
Quitte a remplacer f par — f, on peut supposer que

f(@> x> f(b)

En considérant la fonction g: x—f(x) — Ax, on se raméne au cas ou
g9'(@)> 0> g'(b)

g'(c) = 0=f'(c) = A

Montrons qu'il existe ¢ €]a; b[ tel que

1" cas: g(a) = g(b)
D’apreés le théoréme de Rolle, il existe ¢ €]a; b[ tel que
g@=0
2¢cas: g(a)+g(b)
Considérons les fonctions u et v définies sur [a; b] par
u(x) = {% six€la;b] g (a) six = a et v(x) = {% six€[a; b[ g (b) six = b

Les fonctions u et v sont continues sur [a, b] et

u(b) = v(a)
Remarquons que
. ) .
u(a)u(b)v(a)v(b) = g (@u (b)g (b) < 0

Donc u(a)u(b)< 0 ou v(a)v(b)< 0
Dans le premier cas, u(a) et u(b) ne sont pas de méme signe ni égaux a 0 donc, d’apres le théoréme des
valeurs intermédiaires, il existe y €]a; b[ tel que

u(y) = 0=g() = g(a)
D’apreés le théoréme de Rolle, il existe donc ¢ €]a; y[<]a; b[ tel que

g@=20

Dans le deuxiéme cas, v(a) et v(b) ne sont pas de méme signe ni égaux a 0 donc, d’apres le théoréme des
valeurs intermédiaires, il existe z €]a; b|[ tel que

v(z) = 0=9(2) = g(b)
D’apres le théoréme de Rolle, il existe donc ¢ €]z; b[C]a; b[ tel que

g@©=0

g'(c) = 0=f'(c) = A

Dans tous les cas, il existe ¢ €]a; b[ tel que
Remarque

Il existe une autre démonstration (trés courte) qui utilise des propriétés topologiques sur la connexité mais qui
déborderait complétement du cours de terminale.
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Formule de Taylor-Lagrange

Soient a, bER tels que a < b. Soit neN . Soit une fonction f:[a; b]>R de classe c" sur [a; b] telle que f(nH)

existe sur |a; b|.
Il existe c€]a; b tel que

- (b= 2" n) (b 2 (n+1)
f(b) = o W= (@) + (nfl). f
“reste de Lagrange
Remarques

(ONY PSP - : . g
= 7 désigne la dérivée énieme de f: elle est obtenue en dérivant n fois la fonction f et ses dérivées
successives.

. n . . s s . . s s .
= Une fonction est de classe C si elle est continue et dérivable n fois et si chacune de ses dérivées successives
est continue.

Preuve
Considérons la fonction ¢ définie sur [a; b] par
9 = f(B) — F() — (b — Of () = L2f () e L) - 4L
Remarquons que @(b) = 0 et choisissons A€R tel que @(a) = 0 (c’est possible car a#b)
La fonction ¢ est continue sur [a; b] et dérivable sur ]a; b[ en tant que somme de fonctions continues sur [a; b]
et dérivables sur Ja; b[

vx€la; bl '(x) = f'(x) + f'(x) — (b — 0f (0 + 2R ) - Lo Oy

b— (m b— (n+1) +1)(b—
g 200y o (D g g L)
Donc, en remarquant que tous les termes s’annulent saufles deux derniers,

' b (n+1) b—x)"
@' () = LD ) 4 4 L0
D’apreés le théoréme de Rolle, il existe un réel ¢ €]a; b[ tel que

¢ (€)= 00 =— LD V() 4 gLy = Y

©

Remarquons que

0(a) = 050 = f(b) — f(@) — (b — @)f (¥) — Lof (q) —..— Lo gy — Lo (0P Dy = f(a) + (b

(n+1)!
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