
WAFSmith: An advanced WAF Rule 
Governance Agent 



 

WAFSmith 
An advanced WAF Rule Management Agent 

“LLM-based Rule Management Framework to Create Rules that Simply Work” 
 

 

Github: https://github.com/tankeehock/wafsmith  

An open-source tool by Kee Hock Tan with guidance from Sean Yeoh 

Leveraging LLM's abilities to mimic cognitive human agents, WAFSmith aims to reduce the 
friction of Web Application Firewall rule management from rule creation to deployment in 
minutes. It is designed as a highly disruptive tool to augment Blue Team operations in a rapidly 
evolving threat landscape. It was developed to enhance Blue Team's capabilities to respond to 
threats quickly and effectively, without compromising business operations. The solution is the 
first of its kind, especially in the open source landscape, a novel approach to solving a 
challenging WAF rule management problem. 

In this whitepaper, we attempt to discuss in depth the key challenges of WAF Rule Management 
and a new approach towards improving Rule Management practices by empowering Blue Team 
with a novel, advanced Rule Management AI agent - WAFSmith. 

Abstract 
Rule management has been a challenging issue that enterprises face to maintain a highly 
effective WAF. Poor maintenance of WAF rulesets results in productivity loss and reduced WAF 
effectiveness which ultimately translates to an enlarged attack surface. WAFSmith was 
developed to reduce the friction of rule management by leveraging the capabilities of intelligent 
AI agents to perform tasks to reduce the cognitive burden placed upon human operators. It is a 
highly advanced LLM-based agent that can perform payload extraction, rule writing, testing, and 
deployment. Evaluation performed with proven rulesets such as ModSecurity’s CRS, shows 
significant security improvements introduced by WAFSmith, demonstrating real-world impact. 
The methodology adopted by WAFSmith proved to be robust and reliable which can be easily 
retrofitted to suit other rule-management use cases such as IDPS Rules. WAFSmith is designed 
to enhance Blue Team’s cyber defense investments through a high degree of intelligent 
operations in the domain of rule management. The by-products in the development of 
WAFSmith such as the Prompts and ModSecurity rules serve as valuable contributions to the 
Open-Source community. 

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work 

https://github.com/tankeehock/wafsmith


 

 

Abstract​ 1 
Problem Statement​ 4 

Background​ 4 
Default Rulesets are not enough, finetuning is needed​ 4 
Writing Good WAF rule(s) is hard​ 4 
Bad Rules Break Business Operations​ 4 

Current Solutions​ 6 
Identified Gaps in the Market​ 6 

Limited Access to Advanced Rule Writing Agents in the Market​ 6 
WAF Rule Management remains a highly manual and laborious process​ 7 

Proposed Solution - WAFSmith​ 8 
Design Motivation​ 9 
Revised Workflows with WAFSmith​ 10 
Key Feature(s)​ 11 

Ruleset Self-Management Capabilities​ 11 
Functional Specification(s)​ 11 
Technical Design​ 12 

Proposed WAFSmith Workflow(s)​ 12 
Extract Workflow​ 12 
Create Workflow​ 13 
Aggregate Workflow​ 13 

Prompts​ 13 
Evaluation Metrics​ 14 
Benchmark / Evaluation Setup​ 16 

Evasion Rate​ 16 
Evaluation Data​ 16 
HTTP Methods​ 17 

GET Request​ 17 
POST Request​ 17 

Ease of Management​ 17 
Humans vs WAFSmith​ 17 

Evaluation Data​ 17 
WAFSmith at Scale​ 18 

Results​ 19 
Evasion Rate​ 19 

Results Analysis​ 20 
Ease of Management Benchmarking​ 20 

Human Operator vs WAFSmith​ 20 
Result Analysis​ 21 

WAFSmith at Scale​ 21 
GET Request​ 21 
POST Request​ 21 
Results Analysis​ 22 

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work 



 

Discussion​ 23 
Benefits​ 23 

Creating useful rules​ 23 
Ease of governing ruleset​ 23 

Limitations​ 23 
Accountability for AI Agent​ 23 

Novelty of WAFSmith​ 24 
Advanced Self-Governing Rule Capabilities based on AI agents​ 24 
Proven Methodology for Different Kinds of Rule Management Scenarios​ 24 
Developing open-source rulesets and tailored prompts for wider adoption​ 24 

Conclusion​ 25 
Future Works​ 25 
Automated WAF Management​ 25 

Support for other types of Rule Management Use Cases​ 25 
AI-Based Security Operations Center​ 25 

Release(s)​ 26 
Acknowledgments​ 27 
Appendix A: Case Study of Using OpenAI GPT4 for Regular Expression Generation​ 28 
Appendix D: Techniques used to improve WAFSmith​ 32 

Improving Rule Generation​ 32 
Improving interaction with Docker Containers​ 33 

Appendix E: Data samples from Ease of Management Benchmarking​ 34 
Appendix F: WAFSmith Workflow(s)​ 35 
Appendix G: Adaptation of WAFSmith for IDPS Solution​ 36 
 

 

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work 



 

Problem Statement 

Background 
Web Application Firewall (WAF) is one of the most critical security controls against web-related 
threats. It is often one of the first layers of defense against web-related attacks as part of a 
defense-in-depth strategy that enterprises employ. However, maintaining a highly effective WAF 
continues to be a prevailing challenge as WAF Rule Management continues to be a difficult 
problem to solve in enterprise settings. This can be attributed to: dynamically changing 
business needs, rapidly evolving attack payload landscape, and efficiency requirements 
necessitating pruning of stale rules.  

In this paper, we define WAF Rule Management as active management of the WAF rulesets to 
achieve two core goals: 

●​ Creating useful rules 

●​ Simplifying ruleset maintenance and governance 

Default Rulesets are not enough, finetuning is needed 
Using the default WAF ruleset is not enough to mitigate the constantly evolving threat 
landscape. A report by AppTrana reveals that 59% of the malicious traffic blocked is attributed 
to custom rules. The observation indicates the need to continually review and create new WAF 
rules to meet changing business needs. Popular Open Source WAF applications such as 
ModSecurity by OWASP, released ModSecurity Rule which often served as a baseline for WAF 
application performance. 

WAF rules have to play the "catch-up" game as the threat landscape continuously evolves. For 
instance, new vulnerability discoveries such as Log4J back in 2021, WAF operators scrambled 
to quickly deploy WAF rules to protect against potential exploitation of Log4J.  

Writing Good WAF rule(s) is hard 
WAF rule creation often relies on a good understanding of regular expression (depending on the 
WAF technology) and its associated rule execution engine. Even with the most experienced 
human operator, time is required to develop high-quality rules that target specific web 
vulnerability ranges vastly. The complexity is further exacerbated by WAF solutions adopting 
different flavors of regular expressions such as POSIX Basic Regular Expressions, POSIX 
Extended Regular Expressions (ERE), Perl-Compatible Regular Expressions (PCRE), and 
many other variants. 

Bad Rules Break Business Operations 
WAF rules can potentially disrupt business operations by accidentally blocking normal traffic 
(False Positives). WAF with high false positive rates are indicative of a poor rule design process 
which does not add value to the security posture and may potentially result in business 
disruption. Thus, most Blue Teams will adopt a more conservative approach towards WAF Rule 
Development and perform rigorous testing to ensure that the new rule(s) do not disrupt 

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work 

https://www.indusface.com/research-reports/state-of-application-security-q3-2024.pdf?utm_medium=email&_hsenc=p2ANqtz-8qpUiFLP-5uizhoKt9pNS9OH4OqpSKgATUnVTv9nhLqPmeU9uTdrTu7eESDzJNSp1Ks_bjoxby-L0Q9TVz0c3jYZF5nQ&_hsmi=337840946&utm_content=337840946&utm_source=hs_automation
https://modsecurity.org/
https://owasp.org/
https://coreruleset.org/20211213/crs-and-log4j-log4shell-cve-2021-44228/


 

business operations. This often results in delayed responses to threats and increases the Mean 
Time To Respond (MTTR).  

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work 

https://www.atlassian.com/incident-management/kpis/common-metrics#:~:text=MTTR%20(mean%20time%20to%20recovery%20or%20mean%20time%20to%20restore,it%20becomes%20fully%20operational%20again.
https://www.atlassian.com/incident-management/kpis/common-metrics#:~:text=MTTR%20(mean%20time%20to%20recovery%20or%20mean%20time%20to%20restore,it%20becomes%20fully%20operational%20again.


 

Current Solutions 
With the developments in Large Language Models, many leading WAF solution providers 
adopted LLMs as part of their product strategy to provide assisted WAF rule writing capabilities 
to assist human operators in navigating the challenges of rule management. The list below are 
popular WAF rule-writing agents or tools that are available on the market (non-exhaustive list) to 
assist in the Rule Management process: 

●​ Cloudflare's AI Assistant for WAF Rule Builder 

●​ Impart's Rule Architect 

●​ Imperva's Cloud WAF AI Explainability 

Identified Gaps in the Market 

Limited Access to Advanced Rule Writing Agents in the Market 

Access to such capabilities is often limited as these agents are designed specifically for a single 
product.  WAF is a highly competitive and fragmented market, with known dominant players 
such as AWS, Cloudflare, Imperva, and many other lesser-known players serving different 
segments of the market. These players often offer a unique blend of solutions to meet the 
increasing demands of their customers. With the developments in Artificial Intelligence (AI), 
these players have invested in AI capabilities to improve their service offerings. This creates the 
potential for "vendor lock-in". 

●​ However, the distribution of these capabilities is largely uneven. Not all dominant WAF 
players offer a flavor of AI in their service offerings. This is evident in the open source 
space, the market is largely under-served. 

●​ The capabilities of such tools can be easily witnessed in generally more accessible 
AI-based service offerings such as ChatGPT. Refer to Appendix A: Case Study of Using 
OpenAI GPT4 for ModSecurity Rule Generation. 

 

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work 

https://www.mordorintelligence.com/industry-reports/web-application-firewall-market


 

WAF Rule Management remains a highly manual and laborious process 

Often, managing WAF rulesets requires a human-in-the-loop, which draws resources away from 
Blue Team's ability to react to ongoing threats. The two diagrams below are two common tasks 
relating to rule management. The workflows are highly abstracted and generic. However, they 
serve as a "good enough" representation of activities carried out by typical Blue Teams in most 
enterprises.  

Activities that are identified to be bottlenecks (commonly identified as laborious and manual)  in 
the workflow are highlighted in RED. 

 

 

 

 

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work 



 

Proposed Solution - WAFSmith 

Develop a LLM based Rule Management Framework to reliably develop 
rules that are highly robust and vendor-agnostic 

Definition(s): 

●​ LLM: Large Language Model, such as OpenAI's GPT 4 series 

●​ Rule Management Framework: A structured set of tasks to achieve Rule Management 

goals 

●​ Reliably develop rules: Ability to create rules (WAF) that do not impact business 
operations 

●​ Robust and vendor agnostic: The solution should not work only for a particular vendor 
and offer a high level of interoperability across products 

Leveraging LLM's abilities to emulate cognitive human agents,  WAFSmith is a highly disruptive 
tool capable of augmenting Blue Team operations in a rapidly evolving threat landscape.  
WAFSmith enhances Blue Team's capabilities to respond to threats in a fast and effective 
manner, without compromising business operations. The solution is the first of its kind, 
especially in the open source landscape, a novel approach to solving a challenging problem of 
WAF rule management. 

It is developed as a standalone Command-Line-Interface (CLI) that is platform and product 
agnostic. It can be rapidly deployed in any environment and adapted to the Web Application 
Firewall (WAF) engine to provide reliable rule management capabilities. It allows Blue Teams to 
leverage advanced Artificial Intelligence (AI) agents to reliably and intelligently perform 
WAF-related activities, from payload extraction to WAF rule development, testing, and 
deployment through battle-tested workflows. It can be used in all kinds of WAF-related 
scenarios, such as using it as a rapid-response tool during security incidents to rapidly develop 
WAF rules or as part of routine WAF maintenance tasks to perform rule management 
(aggregation). 

It is designed to ingest text content such as Web Server Logs, and extract potentially malicious 
payload which can be used to trigger rule management-related workflow(s). For instance, it will 
attempt to create a WAF rule to block these potentially malicious payloads. It enforces testing 
workflows to reliably assess the quality of the rules through simulated environments (docker 
containers) to ensure that the rules do not impact business operations. 

WAFSmith leverages LLMs ability to reason, learn, create, and make-decisions to perform 
resource-intensive tasks to a similar or better output level than its human counterparts. 
WAFSmith reduces the friction of rule management by empowering Large Language Models 
(LLMs) to augment and orchestrate these activities. Allowing for enhanced security responses 

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work 



 

with little to no human intervention, saving resource costs and allowing human operators to 
focus on higher-order tasks. 

Design Motivation 
The key motivation behind this solution is to demonstrate the capabilities of mature LLM 
offerings being able to value-add cybersecurity initiatives in any enterprise. The solution takes 
advantage of the advanced cognitive capabilities witnessed in today's LLM offerings and shows 
through empirical evidence how LLM-based agents can reliably perform tasks that are of 
importance. 

The solution aims to be a solution that can be adopted by enterprises to empower their cyber 
defense strategy and capabilities through low-cost and highly effective innovations as seen in 
today's market. 

WAFSmith is currently developed using ModSecurity as the WAF engine. 

●​ CoreRuleSet (CRS) is available as a useful benchmark and base ruleset 

 

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work 

https://github.com/coreruleset/coreruleset


 

Revised Workflows with WAFSmith 
WAFSmith will attempt to automate the identified bottleneck activities as highlighted in the 
"Identified Gaps in the Market" section. The revised workflow is shown below. 

 

 

 

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work 



 

Key Feature(s) 

Ruleset Self-Management Capabilities 
In this whitepaper, Self-Management capability is defined as the tool's ability to perform tasks 
that are crucial in maintaining an effective and easy-to-maintain ruleset. There are four 
capabilities identified that are critical for achieving Self-Management: 

●​ Extraction of Payload(s) 
○​ Based on the data source (e.g. Log Entry), the tool provides the means to extract 

potentially malicious payload that it should block. 

●​ Creation of Rule(s) 
○​ Based on the payload(s), the tool creates a relevant rule(s) to block these 

payload(s) 

●​ Aggregating Rule(s) 
○​ If possible, merge rules to reduce the size of the ruleset, improving runtime 

efficiency and rule sprawl 

●​ Testing the Rule(s) 
○​ Test the rule against the payload, along with simulated business traffic to 

ascertain the potential business impact 

The orchestration of these tasks provides adopters the capability to perform self-governance of 
the ruleset. 

In which provides the core functionality of each key phase of the Rule Creation Lifecycle as 
illustrated below: 

 

In practice, rules are hardly decommissioned, unless they can be aggregated or covered by 
newer rules. 

The tool provides the 4 capabilities in an integrated workflow to ease ruleset governance. 

Functional Specification(s) 
The framework is to be encapsulated as a NodeJS CLI tool that can be easily adopted and 
modified by end users. 

Functional Requirements 

●​ Generate ModSecurity Rule 
●​ Deploy a simulated Web 

Application for testing using 
Docker Containers 

Non-Functional Requirements 

●​ Fail gracefully for docker-related 
deployment tests 

●​ Ease of use in adopting the CLI 
tool 

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work 



 

●​ Test the generated rule against 
business traffic and the payload 

Technical Design 

Proposed WAFSmith Workflow(s) 
The diagram below provides a high-level blueprint of the inner workings of WAFSmith. An 
enlarged diagram can be found in the Appendix F: WAFSmith Workflow(s). 

 

In the following subsections, the workflow’s design specification will be described. 

Extract Workflow 

 

 Specification 

Capability The extract function in WAFSmith intelligently extracts payloads from text 
sources at scale using LLM. 

Scenario Blue Team performs a periodic review of web server logs to identify 
abnormalities. WAFSmith's extract function is used to process these logs at 
scale to produce a list of potentially malicious content / potential payloads. 

Technical 
Inputs 

Open Source Payloads 

Web Server Logs 

HackerOne Reports 

Threat Intelligence Feed 

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work 



 

Technical 
Output 

Payload Lists 

 

Create Workflow 

 

 Specification 

Capability The create function in WAFSmith creates an aggregated ruleset designed 
to block the maximum number of payloads (based on the given input). 

Business Use 
Case 

After the extraction of payloads, Blue Team proceeds to create WAF rules 
to block these payloads as part of ongoing cyber defense efforts. 

Technical 
Inputs 

Payloads 

Technical 
Output 

ModSecurity Rules 

Aggregate Workflow 

 

 Specification 

Capability The aggregate function in WAFSmith provides Blue Teamers the capability 
to intelligently merge rules 

Business Goal Blue Team periodically uses WAFSmith to perform rule aggregation to 
maintain a sizable ruleset. 

Technical 
Inputs 

ModSecurity Rules 

Payload Lists (Coverage) 

Technical 
Output 

ModSecurity Rules 

Prompts 
Please view the prompts in the GitHub 

evaluate workflow does not require LLM. 

 

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work 

https://github.com/tankeehock/wafsmith/tree/main/cli-app/src/lib/llm/prompts


 

Evaluation Metrics 
To understand the performance of WAFSmith, we want to be able to answer two key questions: 

●​ How well the rules are created 

With relevance to WAF, the quality of the rules created can be measured by its ability to 
act on the payload. A good rule that is created can catch the payload that is designed 
for. To measure how well rules are created, the use of the Evasion Rate is adopted. 

 

Evasion Rate 

Number of payloads that were not blocked by the ModSecurity Rules as a ratio against 
the total number of payloads sent 

 

●​ How easy it is to govern the rules 

Ease of governance is a subjective measure. In this metric, we identified three areas of 
indications that tell us how easy it is to govern rules: 

1.​ Ease of Creating Rules 

○​ This can be indicated by the time taken to create rule(s) 

2.​ Ease of Rule Maintenance (Aggregation) 

○​ Aggregation of rules refers to consolidating and improving the ruleset to 
reduce the size of the ruleset to a minimal size without compromising the 
protection it can offer. This can be observed by the number of rules in the 
ruleset 

3.​ Payload Coverage 

○​ This can be observed through the amount of payloads that the ruleset 
can detect 

Thus, to simplify the measurement, we used 2 key statistical measures as primitive 
indicators (below) to measure the three goals above. This leads us to coin the term 
"Ease of Management".  

Ease of Management 

The score will be using a custom metric that is based on two statistical measures in this 
experiment: 

 

Ease of Management = Processing Rate * Block Rate   

 

●​ Processing Rate 

Total number of payloads that the party/tool is tasked to process over the total 
time taken in seconds. The design of this metric helps us to indicate how 
efficiently the tool/party is processing the task. 

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work 



 

The higher the Processing Rate, the more likely the party/tool is effective in 
processing payloads.  

Example - WAFSmith vs Operator 

It takes 120 seconds for Operator 1 to develop modsecurity rules targeted at 
catching 120 payloads. 

Processing Rate: 120 / 120 = 1 

e.g. It takes 30 seconds for WAFSmith to develop modsecurity rules targeted at 
catching 120 payloads 

Processing Rate:  120 / 30 = 4 

Processing Rate indicates how effective the tool/party is in performing the task of 
rule generation along with aggregation for the given set of payloads. The better 
Processing Rate indicates the ease of governing these rules! 

●​ Block Rate 

The number of payloads blocked over the number of active rules 

e.g. 10 rules blocked 100 different payloads for Operator 1 

Block Rate: 100 / 10 = 10 

e.g. 5 rules blocked 100 different payloads for WAFSmith 

Block Rate: 100 / 5 = 20 

Block rate simply tells us how effective the rules are in blocking the payloads. 

 

Calculating the Ease of Management Score 

 

Ease of Management (Operator 1): 1 * 10 = 10   

Ease of Management (WAFSmith): 4 * 20 = 80 

 

Interpretation: The higher the Ease of Management score, the easier it is to govern the 
rules. In this example, using WAFSmith is much easier to govern by around 8 times 
compared to the human counterpart. 

 

WAFSmith is focused on generating new WAF Rules and governing them. The focus of the 
evaluation is to compare how much security has improved after using WAFSmith from a set 
of baseline rules. In this setup, CRS 4.12.0 ModSecurity rules are used as baseline 
benchmarks in which WAFSmith is adopted to improve and govern the ruleset. 

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work 



 

Benchmark / Evaluation Setup 

Evasion Rate 

 

Payloads from a well-known Open Source repository, PayloadsAllThings are used to measure 
the performance of ModSecurity rules. 

1.​ Benchmarking is performed by measuring the evasion rate from the CRS ruleset 

2.​ After the creation of the rules from WAFSmith, the same set of payloads are sent again. 

3.​ Compare the difference in evasion rates before and after rules from WAFSmith were 

deployed. 

In addition, simulated business traffic was sent to determine if the rules were blocking 
supposedly legitimate traffic. This is an additional simple test to ensure the reliability of the 
ruleset. 

Evaluation Data 

Type of 
Attack 

Number of 
Payloads 

Source 

Cross-Site 
Scripting 

2655 https://github.com/swisskyrepo/PayloadsAllTheThings/tree/maste
r/XSS%20Injection/Intruders  

Open Redirect 325 https://github.com/swisskyrepo/PayloadsAllTheThings/tree/maste
r/Open%20Redirect/Intruder  

SQL Injection 1455 https://github.com/swisskyrepo/PayloadsAllTheThings/tree/maste
r/SQL%20Injection/Intruder  

File Inclusion 

 

7943 https://github.com/swisskyrepo/PayloadsAllTheThings/tree/maste
r/File%20Inclusion/Intruders  

Command 
Injection 

531 https://github.com/swisskyrepo/PayloadsAllTheThings/tree/maste
r/Command%20Injection/Intruder  

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work 

https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/XSS%20Injection/Intruders
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/XSS%20Injection/Intruders
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Open%20Redirect/Intruder
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Open%20Redirect/Intruder
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/SQL%20Injection/Intruder
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/SQL%20Injection/Intruder
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/File%20Inclusion/Intruders
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/File%20Inclusion/Intruders
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Command%20Injection/Intruder
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Command%20Injection/Intruder


 

HTTP Methods 
In the benchmarking exercise, both GET Request and POST Request will be evaluated. 

GET Request 

Payload is embedded in the URL parameter 

GET /?payload=<input%2btype%3dtext%2bvalue%3d"XSS"> HTTP/1.1​
Host: 127.0.0.1 

POST Request 

Payload is embedded in the body as an URL Encoded Form Data 

POST / HTTP/1.1​
Host: 127.0.0.1​
Content-Length: 37​
Content-Type: application/x-www-form-urlencoded​
​
payload=<input+type=text+value="XSS"> 

Ease of Management 

Humans vs WAFSmith 

Human operators will be invited to participate in a controlled test to create ModSecurity Rules 
for a given set of payloads. The following data will be collected during the controlled test: 

●​ (A) Time Taken to develop regular expression 

●​ (B) Time Taken to write the ModSecurity Rule(s) after developing the regular expression 

●​ (C) Time Taken to deploy the ModSecurity Rule(s) and perform testing 

Human operators are allowed to use any tools online except LLM-based agents. 

The purpose of the controlled test is to provide benchmarking of the WAFSmith against human 
operators on the Ease of Management metric. The human operators involved in the test are of 
varying experience: 

●​ Human Operator 1: Junior Cyber Security Engineer (1-2 YoE) 

●​ Human Operator 2: Mid Level Cyber Security Engineer (2-4 YoE) 

●​ Human Operator 3: Senior Cyber Security Engineer (6-8 YoE) 

The difference in seniority provides a more fair and varied test against WAFSmith. 

Evaluation Data 

The list below contains a set of payloads that the human operators are tasked to work on. 

navigator.vibrate(500)​
;system('/usr/bin/id')​
<A HREF="http://www.gohttp://www.google.com/ogle.com/">XSS</A>​
/etc/httpd/logs/error_log​
onwheel​
&#X000003C;​
\x3c​

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work 



 

1' ORDER BY 1,2,3--+​
/////example.com​
etc%2fpasswd%00 

 

 
A template ModSecurity Rule is provided to the human operators as well. 

SecRule ARGS_GET "@rx x='<%'" "id:6558757574341,phase:2,deny,status:403,severity:2,tag:'Catch X Open Angle Bracket 
Payload in GET URL Params'" 

WAFSmith at Scale 

Data collection is performed during the benchmarking exercise for the Evasion Rate. The data 
collection aims to derive an Ease of Management score for larger payload sets. 

 

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work 



 

Results 

Disclaimer and Assumptions 

●​ By default, the code base for WAFSmith has a certain degree of performance 

optimization such as multithreading 

●​ Human operators have varying degrees of experience and skill sets which provide data 

variation 

●​ Popular LLM offerings such as OpenAI, Claude, Germini, etc are likely to be indifferent 

in terms of performance related to WAFSmith. 

Evasion Rate 
 

Type of Attack Number of 
Payloads 

GET 
Evasion Rate 

POST 
Evasion Rate 

CRS 4.12.0 
(Before) 

WAFSmith 
(After) 

CRS 4.12.0 
(Before) 

WAFSmith 
(After) 

Cross Site 
Scripting 

2655 
 

428 (16.12%) 19 (0.72%) 428 (16.12%) 21 (0.79%) 

Open Redirect 325 
 

227 (69.85%) 29 (8.92%) 225 (69.23%) 10 (3.08%) 

SQL Injection 1455 
 

242 (16.63%) 45 (3.09%) 242 (16.63%) 42 (2.89%) 

File Inclusion 
 

7943 
 

445 (5.60%) 
 

103 (1.30%) 445 (5.60%) 101 (1.27%) 

Command 
Injection 

531 148 (27.87%) 13 (2.45%) 148 (27.87%) 22 (4.14%) 

 

Improvement Analysis 

GET POST 

CRS 4.12.0 WAFSmith 
Change in 
Evaded 
Payloads 

(%) Change CRS 4.12.0 WAFSmith 
Change in 
Evaded 
Payloads 

(%) Change 

428 19 409 96% 428 21 407 95% 

227 29 198 87% 225 10 215 96% 

242 45 197 81% 242 42 200 83% 

445 103 342 77% 445 101 344 77% 

148 13 135 91% 148 22 126 85% 

  Avg. Change 86%   Avg. Change 87% 

 

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work 



 

Results Analysis 
From the evasion rates collected before and after the use of WAFSmith, there are clear and 
significant drops in evasion rates. This concludes that WAFSmith can create rules that block 
payloads effectively.  

●​ Based on the performance of the other payload types, it is conclusive that the underlying 
LLM is indifferent toward the rule creation of either POST or GET requests. However, 
the evasion rate for Open Redirect attacks has a significant difference between POST 
and GET requests. This is likely due to the temperature configuration of the LLM as it 
does tend to produce varying results even with the same prompts. 

Ease of Management Benchmarking 

Human Operator vs WAFSmith  

Review the sample set of ModSecurity Rules generated in Appendix E: Data samples from 
Ease of Management Benchmarking  
 
Legend 

●​ Block Task: Number of  payloads the rules are developed by the entities are supposed 

to block 

●​ (A) Time Taken to develop regular expression 

●​ (B) Time Taken to write the ModSecurity Rule(s) after developing the regular expression 

●​ (C) Time Taken to deploy the ModSecurity Rule(s) and perform testing 

●​ E.O.M Score: Ease of Management Score 

 

 
Block 
Task 

(A) (B) (C) Time Processing 
Rate 

Payloads
Blocked 

No. 
Rules 

Block 
Rate 

E.O.M 
Score 

Human 
Operator 1 10 1533 510 134 2177 0.004593477 4 9 0.4 0.001837 

Human 
Operator 2 10 1164 150 613 1927 0.005189414 10 10 1 0.005189 

Human 
Operator 3 10 195 240 270 705 0.014184397 10 10 1 0.014184 

WAFSmith 10 121 0.082644628 10 7 1 0.082645 

 
Remarks 

●​ Time measurement for WAFSmith to perform Column (A), (B), and (C) activities are 

captured in a single execution flow. Thus, the value is an aggregated value. 

●​ WAFSmith is configured for 10 threads (minimally). 

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work 



 

 

Result Analysis 

WAFSmith emerged as a clear winner in the benchmarking exercise with a score that is nearly 
80 times better than Human Operator 1. However, it is worth noting that compared to a skilled 
operator like Human Operator 3, WAFSmith performed only 5.85 times better. While skills 
matter, the difference in score is likely to increase as the scale of the test enlarges (e.g. a larger 
payload set). 

WAFSmith at Scale 

GET Request 

 

 

Number of 
Payloads 
Designed to 
Block 

Time 
Taken 
(s) 

Processing 
Rate 

Number of 
Payloads 
Blocked 

Number of 
ModSecurity 
Rules 

Block Rate Ease of 
Managemen
t Score 

XSS 428 2755.356 0.15533383 382 68 5.617647059 0.873 

Open Redirect 227 1320.276 0.171933747 195 96 2.03125 0.349 

SQL Injection 242 1098.8 0.220240262 197 19 10.36842105 2.284 

File Inclusion 445 1993.115 0.223268602 327 96 3.40625 0.761 

Command 
Injection 148 864.066 0.171283212 133 11 12.09090909 2.071 

 

Remarks 

●​ Configured for 50 threads, payload positioned in URL Parameter 

POST Request 

 

 

Number of 
Payloads 
Designed to 
Block 

Time 
Taken 
(s) 

Processing 
Rate 

Number of 
Payloads 
Blocked 

Number of 
ModSecurity 
Rules 

Block Rate Ease of 
Managemen
t Score 

XSS 428 2738.899 0.156267172 407 38 10.71052632 1.674 

Open Redirect 225 1377.747 0.1633101 213 20 10.65 1.739 

SQL Injection 242 1008.873 0.239871619 200 11 18.18181818 4.361 

File Inclusion 445 1699.554 0.261833399 327 78 4.192307692 1.098 

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work 



 

Command 
Injection 148 897.811 0.164845385 126 15 8.4 1.385 

 

Remarks 

●​ Configured for 50 threads, payload positioned in URL Parameter 

Results Analysis 

The Ease of Management scores are visualized in a bar chart below to understand how 
WAFSmith performs at scale. 

 

Visually, we can observe that POST Requests, except Command Injection payloads, WAFSmith 
finds it easier to govern! However, POST request for SQL Injection is a case of an outlier in 
which it outperforms significantly compared to other attack types. 

 

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work 



 

Discussion 

Benefits 
The benchmarking exercise concludes that WAFSmith can perform its intended design goals of 
Rule Management: 

●​ Creating useful rules 

●​ Simplifying ruleset maintenance and governance 

Ultimately, it was developed to reduce the cost of Rule Management in enterprises. Blue Team 
can easily adopt this tool in their workflows to improve the efficacy of rule management. The 
reduced cost of Rule Management will translate to: 

●​ Stronger security posture 

●​ Increased enterprise agility to respond to threats 

●​ Reduced manpower consumption 

Creating useful rules 
The Evasion Rate benchmarking demonstrated how much the attack surface can be reduced 
through the adoption of WAFSmith. On average, the evasion rate improved by 86.5% after the 
adoption of WAFSmith. 

Ease of governing ruleset 
In the evaluation against human operators, it is evident that WAFSmith can reliably scale and 
develop rules that are of quality (maybe even better) in a shorter amount of time. The level of 
automation allows enterprises to be unrivaled. In the data collected for the Evasion Rate 
benchmarking, WAFSmith scaled relatively well to develop ModSecurity rules that are designed 
to block hundreds (>100~400) payloads. 

Limitations 

Accountability for AI Agent 

As the capabilities of AI agents develop, it is more likely that tasks that require lower cognitive 
workload will be replaced by these AI agents. However, enterprises have different risk appetites 
and trust in AI agents. While WAFSmith has proven to be a reliable agent in developing 
high-quality ModSecurity Rules, enterprises may adopt a human-in-the-loop approach to ensure 
accountability for WAFSmith output. 

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work 



 

Novelty of WAFSmith 

Advanced Self-Governing Rule Capabilities based on AI agents 

WAFSmith is the first of its kind, aimed at empowering Blue-Teamers across the world with 
access to advanced LLM capabilities. Current developments in LLM allow unparalleled levels of 
automation and intelligence to perform difficult and laborious tasks. This capability has yet to be 
widely accessible in the WAF Rule Management space. 

Proven Methodology for Different Kinds of Rule Management Scenarios 

The methodology adopted in the solution is highly robust and meticulously designed to handle 
different kinds of rule-making scenarios. For instance, the tool can be easily modified to support 
Perl-Compatible Regular Expressions (PCRE) to develop ModSecurity rules or, easily modified 
to create SNORT rules (refer to Appendix G: Adaptation of WAFSmith for IDPS Solution).  

The methodology emphasizes automation and testing to ensure high-quality rules and reliability. 
It is designed to operate as a standalone Command Line Interface (CLI) that is not reliant on 
any other products. This allows Blue Teamers to easily plug and play the tool in various kinds of 
Rule Management scenarios. 

Developing open-source rulesets and tailored prompts for wider adoption 

The by-products of the development process such as the ModSecurity Rules and Prompts are 
released for community usage. These by-products are tested and customized for the solution's 
proposed use case. Proposed use cases of the by-products: 

●​ ModSecurity Rulesets (as shared in the repository) produced to improve CRS baselines 

are available for everyone to adopt.  

●​ The prompts used in the solution can be adopted by security engineers in LLM-related 

application development 

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work 



 

Conclusion 
The current benchmarking exercises provide positive reinforcement of the novelty and 
practicality of WAFSmith. It is the first step in a novel approach toward WAF rule management 
and represents the potential in harnessing Artificial Intelligence in cyber-defence strategies.  

WAFSmith demonstrated the ability of LLMs to orchestrate reactive action at a fraction of the 
cost and time. The cost savings introduced by adopting this work aim to: 

●​ Shift of cognitive burden for human operators to higher-order tasks 

●​ Introduce cost savings through gained productivity 

●​ Reduce Mean Time To Respond (MTTR) for security-related incidents 

●​ Allow bootstrapping of WAF rules 

Future Works 
On the longer horizon, it is part of a larger initiative to develop and improve security tools within 
the open-source space. It is also part of an active research project that is in the domain of AI 
and Cybersecurity.  

Currently, WAFSmith is part of a Honeypot operation in which ModSecurity is deployed in the 
wild to collect data and perform a high degree of WAF governance automation (detecting 
attacks to automatically deploy generated rules to protect against these attacks). 

The projects below are directions in which WAFSmith will pursue: 

Automated WAF Management 
WAFSmith represents a significant level of automation that can be introduced to the entire WAF 
Management operation. The current benchmarks show that a fully automated WAF solution 
using AI agents is feasible and potentially a highly practical solution. 

Support for other types of Rule Management Use Cases 
A similar use case in which WAFSmith is highly suitable to be adopted is for Snort Rule 
Management. Snort Rule Management is similar to how WAF rules are traditionally governance. 
In addition, the following use cases can be adopted: 

●​ SAST Tools such as SemGrep 

●​ Host-Based Firewall Rule Management 

AI-Based Security Operations Center 
As AI continues to make advances, especially in areas of reasoning and decision-making, it is 
foreseeable that activities within any cybersecurity organization can be automated and 
improved through AI, allowing humans to focus on more important tasks or decision-making 
processes. An article by RadiantSecurity further enforces such an idea. WAFSmith represents a 
small portion of this AI-driven dream! 

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work 

https://radiantsecurity.ai/learn/ai-driven-soc/


 

Release(s) 
Version Expected Timeline Release Notes 

v1.0.0 17 March 2025 

●​ Aligned with Blackhat 
Arsenal of Tools 

 

Functional Release  

●​ v1.0 
○​ extract 
○​ create 
○​ aggregate 
○​ evaluate 

Ruleset 

●​ v1.0 (XSS/SQLi/Command Injection/Open-Redirect) 

Prompts 

●​ v1.0 (extract/create/aggregate) 

Notes 

The initial release is targeted at the specific content: 

●​ extract supports payload extraction on NGINX logs 
●​ create supports creation of ModSecurity rules 
●​ evaluate supports testing of Web Application Attacks 

v1.1 By the end of April 2025 

*Ongoing legal and administrative 
discussion 

Prompts 

●​ v1.1 

Enhanced extract prompts for various types of text content (e.g. 
Apache Logs, Web Content, etc) 

 

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work 



 

Acknowledgments 
I would like to acknowledge Hitesh Yadav and Sean Yeoh's efforts to participate in reviewing 
both the technical and administrative elements of this project. Their guidance and insights into 
how human operators work in high-pressure scenarios, especially in cyber incidents proved 
invaluable to the project's motivation and roadmap. Not to forget Jordan Vaughn's continued 
support for this project to benefit the open-source community. 

To other supportive folks, you know who you are! Thank you! 

 

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work 



 

Appendix A: Case Study of Using OpenAI GPT4 for 
Regular Expression Generation 
Conversation History: https://chatgpt.com/share/67d75289-8ff4-800f-9eea-d06b764b3727 

The following case study is a simple evaluation performed on a popular Large Language Model 
such as OpenAI's ChatGPT ability to mimic a junior cybersecurity analyst writing a ModSecurity 
Rule. 

1.​ Extracting the payload from a sample NGINX Log entry 

 

2.​ Creating a Regular Expression 

 

 

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work 



 

3.​ Validating the Regular Expression 

 

 

4.​ Prompting LLM to convert the Regular Expression to a ModSecurity Rule 

 

 

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work 



 

 

5.​ Testing the ModSecurity Rule 

Before the implementation of the rule, a curl request was sent to observe the server 
response. 

 

The rule is then implemented in ModSecurity in a file named custom.conf. 

 

Upon deploying the rule, ModSecurity service is restarted and the same curl request is 
sent again. The response is the same as what was observed previously.  

 

However, since the rule is configured for block mode, it will not deny the request. 
Instead, it should appear in ModSecurity's Audit Log. 

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work 



 

 

A quick search in the logs with the Rule ID shows that the entry appeared! Thus, it 
shows that the proof of concept works! 

 

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work 



 

Appendix D: Techniques used to improve WAFSmith 

Improving Rule Generation 
Generating Random Value instead of relying on LLM 

Issue LLM agents are observed not to be very good with random value 
generation during evaluation trials 

Impact LLM agents are unable to generate ModSecurity rules at scale 
due to ID collision when deployed 

Solution A random value is generated and substituted into the ModSecurity 
rule that was generated by LLM. 

Adopting Chain of Thought Prompting 

Issue LLM agents may have difficulty processing a complex task such 
as creating a valid ModSecurity rule 

Impact The rules developed by LLM are not syntactically correct or with 
valid semantic meaning. 

Solution Provide step-by-step guidance on deriving the output. In 
addition, be explicit in the output which the LLM should not 
produce. For example "Respond in JSON format only." 

Perform preprocessing of data  

Issue During payload extract attempts, raw data might be encoded or 
formatted. For example, the following Nginx Log entry has been 
encoded: 

172.20.0.1 - - [14/Mar/2025:05:25:00 +0000] "GET 
/?payload=%3Cinput+type%3Dtext+value%3D%E2%80%9CXSS
%E2%80%9D%3E HTTP/1.1" 200 13 "-" "axios/1.7.9" "-" 

Impact The LLM agent generated a regular expression that catches the 
payload in its encoded form. However, it does not work in 
real-world attacks as WAF engines like ModSecurity will perform 
URL decoding. 

Solution Perform preprocessing steps such as URL encoding, before 
supplying the data to the LLM to perform the task. E.g. 

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work 



 

172.20.0.1 - - [14/Mar/2025:05:25:00 +0000] "GET 
/?payload=<input+type=text+value=“XSS”> HTTP/1.1" 200 13 "-" 
"axios/1.7.9" "-" 

Improving interaction with Docker Containers 
Docker containers are used to orchestrate a consistent testing environment. Various state 
checks were implemented to ensure the health of the containers. It is worth noting that an 
invalid ModSecurity rule can result in the container being unable to run properly. It is common 
for LLM to occasionally produce an invalid ModSecurity rule. 

 

 

 

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work 



 

Appendix E: Data samples from Ease of 
Management Benchmarking 
The payload below is the payload in which the subsequent ModSecurity Rules are designed to 
catch 

;system('/usr/bin/id') 

 

The table below shows the a sampled set of ModSecurity Rule(s) from the experiment for the 
given payload 
 

 ModSecurity Rule 

Human 
Operator 1 

 

SecRule ARGS_GET "@rx '\;system\(\'\/usr\/bin\/[A-z]+'" 
"id:6558757574342,phase:2,deny,status:403,severity:2,tag:'Catch Command injection'" 

 

Human 
Operator 2 

 

SecRule ARGS_GET "@rx ;(system|SYSTEM)\('\/.*\/.*'\)" 
"id:6558752571341,phase:2,deny,status:403,severity:2,tag:'hacked'" 

 

Human 
Operator 3 

 

SecRule ARGS_GET "@rx ;system\('.*?'\)" "id:45362358,phase:2,deny,status:403,severity:2,tag:'hehexd'" 

 

WAFSmith 
 

SecRule ARGS "|;system\s*\(\s*['\"]?.*?['\"]?\s*\)|" 
"id:7778889123,phase:2,deny,status:403,t:normalizePathWhitespace,t:urlDecodeUni,tag:'command-injection'
" 

 

 

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work 



 

Appendix F: WAFSmith Workflow(s) 

 
 

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work 



 

Appendix G: Adaptation of WAFSmith for IDPS Solution 

 

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work 


	WAFSmith: An advanced WAF Rule Governance Agent 
	WAFSmith 
	Abstract 
	Problem Statement 
	Background 
	Default Rulesets are not enough, finetuning is needed 
	Writing Good WAF rule(s) is hard 
	Bad Rules Break Business Operations 

	Current Solutions 
	Identified Gaps in the Market 
	Limited Access to Advanced Rule Writing Agents in the Market 
	 
	WAF Rule Management remains a highly manual and laborious process 



	 
	Proposed Solution - WAFSmith 
	Design Motivation 
	 
	Revised Workflows with WAFSmith 
	 
	Key Feature(s) 
	Ruleset Self-Management Capabilities 

	Functional Specification(s) 
	Technical Design 
	Proposed WAFSmith Workflow(s) 
	Extract Workflow 
	 
	Create Workflow 
	Aggregate Workflow 


	Prompts 
	 
	Evaluation Metrics 
	Benchmark / Evaluation Setup 
	Evasion Rate 
	Evaluation Data 
	HTTP Methods 
	GET Request 
	POST Request 


	Ease of Management 
	Humans vs WAFSmith 
	Evaluation Data 

	WAFSmith at Scale 



	 
	Results 
	Evasion Rate 
	Results Analysis 

	Ease of Management Benchmarking 
	Human Operator vs WAFSmith  
	Result Analysis 

	WAFSmith at Scale 
	GET Request 
	POST Request 
	Results Analysis 



	Discussion 
	Benefits 
	Creating useful rules 
	Ease of governing ruleset 

	Limitations 
	Accountability for AI Agent 

	Novelty of WAFSmith 
	Advanced Self-Governing Rule Capabilities based on AI agents 
	Proven Methodology for Different Kinds of Rule Management Scenarios 
	Developing open-source rulesets and tailored prompts for wider adoption 


	Conclusion 
	Future Works 
	Automated WAF Management 
	Support for other types of Rule Management Use Cases 
	AI-Based Security Operations Center 


	Release(s) 
	 
	Acknowledgments 
	Appendix A: Case Study of Using OpenAI GPT4 for Regular Expression Generation 
	 
	Appendix D: Techniques used to improve WAFSmith 
	Improving Rule Generation 
	Improving interaction with Docker Containers 

	 
	 
	Appendix E: Data samples from Ease of Management Benchmarking 
	Appendix F: WAFSmith Workflow(s) 
	Appendix G: Adaptation of WAFSmith for IDPS Solution 

