WAFSmith: An advanced WAF Rule
Governance Agent

WAFSmith
An advanced WAF Rule Management Agent

‘LLM-based Rule Management Framework to Create Rules that Simply Work”

Github: https://github.com/tankeehock/wafsmith

An open-source tool by Kee Hock Tan with guidance from Sean Yeoh

Leveraging LLM's abilities to mimic cognitive human agents, WAFSmith aims to reduce the
friction of Web Application Firewall rule management from rule creation to deployment in
minutes. It is designed as a highly disruptive tool to augment Blue Team operations in a rapidly
evolving threat landscape. It was developed to enhance Blue Team's capabilities to respond to
threats quickly and effectively, without compromising business operations. The solution is the
first of its kind, especially in the open source landscape, a novel approach to solving a
challenging WAF rule management problem.

In this whitepaper, we attempt to discuss in depth the key challenges of WAF Rule Management
and a new approach towards improving Rule Management practices by empowering Blue Team
with a novel, advanced Rule Management Al agent - WAFSmith.

Abstract

Rule management has been a challenging issue that enterprises face to maintain a highly
effective WAF. Poor maintenance of WAF rulesets results in productivity loss and reduced WAF
effectiveness which ultimately translates to an enlarged attack surface. WAFSmith was
developed to reduce the friction of rule management by leveraging the capabilities of intelligent
Al agents to perform tasks to reduce the cognitive burden placed upon human operators. Itis a
highly advanced LLM-based agent that can perform payload extraction, rule writing, testing, and
deployment. Evaluation performed with proven rulesets such as ModSecurity’'s CRS, shows
significant security improvements introduced by WAFSmith, demonstrating real-world impact.
The methodology adopted by WAFSmith proved to be robust and reliable which can be easily
retrofitted to suit other rule-management use cases such as IDPS Rules. WAFSmith is designed
to enhance Blue Team’s cyber defense investments through a high degree of intelligent
operations in the domain of rule management. The by-products in the development of
WAFSmith such as the Prompts and ModSecurity rules serve as valuable contributions to the
Open-Source community.

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work

https://github.com/tankeehock/wafsmith

Abstract
Problem Statement
Background

Default Rulesets are not enough, finetuning is needed

Writing Good WAF rule(s) is hard

Bad Rules Break Business Operations

Current Solutions
Identified Gaps in the Market

Limited Access to Advanced Rule Writing Agents in the Market
WAF Rule Management remains a highly manual and laborious process

Proposed Solution - WAFSmith
Design Motivation
Revised Workflows with WAFSmith
Key Feature(s)

Ruleset Self-Management Capabilities

Functional Specification(s)
Technical Design
Proposed WAFSmith Workflow(s)
Extract Workflow
Create Workflow
Aggregate Workflow
Prompts
Evaluation Metrics
Benchmark / Evaluation Setup
Evasion Rate
Evaluation Data
HTTP Methods
GET Request
POST Request
Ease of Management
Humans vs WAFSmith
Evaluation Data
WAFSmith at Scale
Results
Evasion Rate
Results Analysis
Ease of Management Benchmarking
Human Operator vs WAFSmith
Result Analysis
WAFSmith at Scale
GET Request
POST Request
Results Analysis

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work

[JIEN N Yo > Mo NN S U NG NG QU

N NDN N N MNMNDMDMDMMNMMN-2CA 2 A ey e e e = e e = = =y oy oy =
N =2 =2 2 20 OO0 0 O OWOoO NNNNNANOODOOOPWWWNDNN-=_2 2 20 o

Discussion
Benefits
Creating useful rules
Ease of governing ruleset
Limitations
Accountability for Al Agent
Novelty of WAFSmith
Advanced Self-Governing Rule Capabilities based on Al agents
Proven Methodology for Different Kinds of Rule Management Scenarios
Developing open-source rulesets and tailored prompts for wider adoption
Conclusion
Future Works
Automated WAF Management
Support for other types of Rule Management Use Cases
Al-Based Security Operations Center
Release(s)
Acknowledgments
Appendix A: Case Study of Using OpenAl GPT4 for Regular Expression Generation
Appendix D: Techniques used to improve WAFSmith
Improving Rule Generation
Improving interaction with Docker Containers
Appendix E: Data samples from Ease of Management Benchmarking
Appendix F: WAFSmith Workflow(s)
Appendix G: Adaptation of WAFSmith for IDPS Solution

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work

23
23
23
23
23
23
24
24
24
24
25
25
25
25
25
26
27
28
32
32
33
34
35
36

Problem Statement

Background

Web Application Firewall (WAF) is one of the most critical security controls against web-related
threats. It is often one of the first layers of defense against web-related attacks as part of a
defense-in-depth strategy that enterprises employ. However, maintaining a highly effective WAF
continues to be a prevailing challenge as WAF Rule Management continues to be a difficult
problem to solve in enterprise settings. This can be attributed to: dynamically changing
business needs, rapidly evolving attack payload landscape, and efficiency requirements
necessitating pruning of stale rules.

In this paper, we define WAF Rule Management as active management of the WAF rulesets to
achieve two core goals:

e Creating useful rules

e Simplifying ruleset maintenance and governance

Default Rulesets are not enough, finetuning is needed

Using the default WAF ruleset is not enough to mitigate the constantly evolving threat
landscape. A report by AppTrana reveals that 59% of the malicious traffic blocked is attributed
to custom rules. The observation indicates the need to continually review and create new WAF
rules to meet changing business needs. Popular Open Source WAF applications such as
ModSecurity by OWASP, released ModSecurity Rule which often served as a baseline for WAF
application performance.

WAF rules have to play the "catch-up" game as the threat landscape continuously evolves. For
instance, new vulnerability discoveries such as Log4J back in 2021, WAF operators scrambled
to quickly deploy WAF rules to protect against potential exploitation of Log4J.

Writing Good WAF rule(s) is hard

WAF rule creation often relies on a good understanding of regular expression (depending on the
WAF technology) and its associated rule execution engine. Even with the most experienced
human operator, time is required to develop high-quality rules that target specific web
vulnerability ranges vastly. The complexity is further exacerbated by WAF solutions adopting
different flavors of regular expressions such as POSIX Basic Regular Expressions, POSIX
Extended Regular Expressions (ERE), Perl-Compatible Regular Expressions (PCRE), and
many other variants.

Bad Rules Break Business Operations

WAF rules can potentially disrupt business operations by accidentally blocking normal traffic
(False Positives). WAF with high false positive rates are indicative of a poor rule design process
which does not add value to the security posture and may potentially result in business
disruption. Thus, most Blue Teams will adopt a more conservative approach towards WAF Rule
Development and perform rigorous testing to ensure that the new rule(s) do not disrupt

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work

https://www.indusface.com/research-reports/state-of-application-security-q3-2024.pdf?utm_medium=email&_hsenc=p2ANqtz-8qpUiFLP-5uizhoKt9pNS9OH4OqpSKgATUnVTv9nhLqPmeU9uTdrTu7eESDzJNSp1Ks_bjoxby-L0Q9TVz0c3jYZF5nQ&_hsmi=337840946&utm_content=337840946&utm_source=hs_automation
https://modsecurity.org/
https://owasp.org/
https://coreruleset.org/20211213/crs-and-log4j-log4shell-cve-2021-44228/

business operations. This often results in delayed responses to threats and increases the Mean
Time To Respond (MTTR).

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work

https://www.atlassian.com/incident-management/kpis/common-metrics#:~:text=MTTR%20(mean%20time%20to%20recovery%20or%20mean%20time%20to%20restore,it%20becomes%20fully%20operational%20again.
https://www.atlassian.com/incident-management/kpis/common-metrics#:~:text=MTTR%20(mean%20time%20to%20recovery%20or%20mean%20time%20to%20restore,it%20becomes%20fully%20operational%20again.

Current Solutions

With the developments in Large Language Models, many leading WAF solution providers
adopted LLMs as part of their product strategy to provide assisted WAF rule writing capabilities
to assist human operators in navigating the challenges of rule management. The list below are
popular WAF rule-writing agents or tools that are available on the market (non-exhaustive list) to
assist in the Rule Management process:

o Cloudflare's Al Assistant for WAF Rule Builder
e Impart's Rule Architect

e Imperva's Cloud WAF Al Explainability

Identified Gaps in the Market

Limited Access to Advanced Rule Writing Agents in the Market

Access to such capabilities is often limited as these agents are designed specifically for a single
product. WAF is a highly competitive and fragmented market, with known dominant players
such as AWS, Cloudflare, Imperva, and many other lesser-known players serving different
segments of the market. These players often offer a unique blend of solutions to meet the
increasing demands of their customers. With the developments in Artificial Intelligence (Al),
these players have invested in Al capabilities to improve their service offerings. This creates the
potential for "vendor lock-in".

e However, the distribution of these capabilities is largely uneven. Not all dominant WAF
players offer a flavor of Al in their service offerings. This is evident in the open source
space, the market is largely under-served.

e The capabilities of such tools can be easily withessed in generally more accessible
Al-based service offerings such as ChatGPT. Refer to Appendix A: Case Study of Using
OpenAl GPT4 for ModSecurity Rule Generation.

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work

https://www.mordorintelligence.com/industry-reports/web-application-firewall-market

WAF Rule Management remains a highly manual and laborious process

Often, managing WAF rulesets requires a human-in-the-loop, which draws resources away from
Blue Team's ability to react to ongoing threats. The two diagrams below are two common tasks
relating to rule management. The workflows are highly abstracted and generic. However, they
serve as a "good enough" representation of activities carried out by typical Blue Teams in most
enterprises.

Activities that are identified to be bottlenecks (commonly identified as laborious and manual) in
the workflow are highlighted in RED.

SOC Tools Auack
[{ SIEM) et Re::ort’:alse Deploy Rule
€52 Detection Ve
Analyst AnalyzLe Alarm / 3 Perfo.rm Yes =
og Blocking?

Create WAF Rule Task Bottleneck

Continue
Operations Deploy Rules

~
No
Perform
Analyze 3 Aggregate — 3 Cluste}rmg}/ 3
Ruleset ? Categorization
of Rules

Govern WAF Rules Task Bottleneck

Develop WAF
Rule

—>| TestWAF Rule

J

Extract Payload J%

Analyst

Merge Rules [—>| Test WAF Rule

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work

Proposed Solution - WAFSmith

Develop a LLM based Rule Management Framework to reliably develop
rules that are highly robust and vendor-agnostic

Definition(s):

e LLM: Large Language Model, such as OpenAl's GPT 4 series

e Rule Management Framework: A structured set of tasks to achieve Rule Management

goals

e Reliably develop rules: Ability to create rules (WAF) that do not impact business
operations

e Robust and vendor agnostic: The solution should not work only for a particular vendor
and offer a high level of interoperability across products

Leveraging LLM's abilities to emulate cognitive human agents, WAFSmith is a highly disruptive
tool capable of augmenting Blue Team operations in a rapidly evolving threat landscape.
WAFSmith enhances Blue Team's capabilities to respond to threats in a fast and effective
manner, without compromising business operations. The solution is the first of its kind,
especially in the open source landscape, a novel approach to solving a challenging problem of
WAF rule management.

It is developed as a standalone Command-Line-Interface (CLI) that is platform and product
agnostic. It can be rapidly deployed in any environment and adapted to the Web Application
Firewall (WAF) engine to provide reliable rule management capabilities. It allows Blue Teams to
leverage advanced Artificial Intelligence (Al) agents to reliably and intelligently perform
WAF-related activities, from payload extraction to WAF rule development, testing, and
deployment through battle-tested workflows. It can be used in all kinds of WAF-related
scenarios, such as using it as a rapid-response tool during security incidents to rapidly develop
WAF rules or as part of routine WAF maintenance tasks to perform rule management
(aggregation).

It is designed to ingest text content such as Web Server Logs, and extract potentially malicious
payload which can be used to trigger rule management-related workflow(s). For instance, it will
attempt to create a WAF rule to block these potentially malicious payloads. It enforces testing
workflows to reliably assess the quality of the rules through simulated environments (docker
containers) to ensure that the rules do not impact business operations.

WAFSmith leverages LLMs ability to reason, learn, create, and make-decisions to perform
resource-intensive tasks to a similar or better output level than its human counterparts.
WAFSmith reduces the friction of rule management by empowering Large Language Models
(LLMs) to augment and orchestrate these activities. Allowing for enhanced security responses

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work

with little to no human intervention, saving resource costs and allowing human operators to
focus on higher-order tasks.

Design Motivation

The key motivation behind this solution is to demonstrate the capabilities of mature LLM
offerings being able to value-add cybersecurity initiatives in any enterprise. The solution takes
advantage of the advanced cognitive capabilities witnessed in today's LLM offerings and shows
through empirical evidence how LLM-based agents can reliably perform tasks that are of
importance.

The solution aims to be a solution that can be adopted by enterprises to empower their cyber
defense strategy and capabilities through low-cost and highly effective innovations as seen in
today's market.

WAFSmith is currently developed using ModSecurity as the WAF engine.

e CoreRuleSet (CRS) is available as a useful benchmark and base ruleset

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work

https://github.com/coreruleset/coreruleset

Revised Workflows with WAFSmith

WAFSmith will attempt to automate the identified bottleneck activities as highlighted in the
"Identified Gaps in the Market" section. The revised workflow is shown below.

SOC Tools Atiack
Alarms / ReporF l.false Deploy Rule
(e.g. SIEM) Deaen Positive

No

Analyze Alarm / Perform
Analyst s E— W

Yes

Develop WAF
Rule

WAFSmith Extract Payload [—> —>| Test WAF Rule

Create WAF Rule Task

Continue
Operations Deploy Rules
~

No
Analyst |

Analyze 3 Aggregate
Ruleset ?

Yes
Perform
WAFSmith l y| Clustering/

Merge Rules [—>| TestWAF Rule

Categorization
of Rules

Govern WAF Rules Task

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work

Key Feature(s)

Ruleset Self-Management Capabilities

In this whitepaper, Self-Management capability is defined as the tool's ability to perform tasks
that are crucial in maintaining an effective and easy-to-maintain ruleset. There are four
capabilities identified that are critical for achieving Self-Management:

e Extraction of Payload(s)
o Based on the data source (e.g. Log Entry), the tool provides the means to extract
potentially malicious payload that it should block.
e Creation of Rule(s)
o Based on the payload(s), the tool creates a relevant rule(s) to block these
payload(s)
e Aggregating Rule(s)
o If possible, merge rules to reduce the size of the ruleset, improving runtime
efficiency and rule sprawl
e Testing the Rule(s)

o Test the rule against the payload, along with simulated business traffic to
ascertain the potential business impact

The orchestration of these tasks provides adopters the capability to perform self-governance of
the ruleset.

In which provides the core functionality of each key phase of the Rule Creation Lifecycle as
illustrated below:

Monitor/ Develop the
Detecs ———>| Extract Payload [————> Rule ———>| Aggregate Rule | ————> Test Rule —>| Deploy

Typical Rule Creation Workflow

In practice, rules are hardly decommissioned, unless they can be aggregated or covered by
newer rules.

The tool provides the 4 capabilities in an integrated workflow to ease ruleset governance.

Functional Specification(s)

The framework is to be encapsulated as a NodeJS CLI tool that can be easily adopted and
modified by end users.

Functional Requirements Non-Functional Requirements
Generate ModSecurity Rule e Fail gracefully for docker-related
Deploy a simulated Web deployment tests
Application for testing using e Ease of use in adopting the CLI
Docker Containers tool

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work

e Test the generated rule against
business traffic and the payload

Technical Design

Proposed WAFSmith Workflow(s)

The diagram below provides a high-level blueprint of the inner workings of WAFSmith. An
enlarged diagram can be found in the Appendix F: WAFSmith Workflow(s).

Aggregate Funct...

i

Create Function

e) LLM Conversa...

®
Extract Function

LLM Conversa... | i o
n o i i | Docker Cont...

In the following subsections, the workflow’s design specification will be described.

Extract Workflow

Specification

Capability The extract function in WAFSmith intelligently extracts payloads from text
sources at scale using LLM.

Scenario Blue Team performs a periodic review of web server logs to identify
abnormalities. WAFSmith's extract function is used to process these logs at
scale to produce a list of potentially malicious content / potential payloads.

Technical Open Source Payloads
Inputs Web Server Logs
HackerOne Reports

Threat Intelligence Feed

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work

Technical
Output

Create Workflow

Payload Lists

Specification

Capability

The create function in WAFSmith creates an aggregated ruleset designed
to block the maximum number of payloads (based on the given input).

Business Use
Case

After the extraction of payloads, Blue Team proceeds to create WAF rules
to block these payloads as part of ongoing cyber defense efforts.

Technical Payloads
Inputs
Technical ModSecurity Rules
Output
Aggregate Workflow
Specification
Capability The aggregate function in WAFSmith provides Blue Teamers the capability

to intelligently merge rules

Business Goal

Blue Team periodically uses WAFSmith to perform rule aggregation to
maintain a sizable ruleset.

Technical ModSecurity Rules
Inputs Payload Lists (Coverage)
Technical ModSecurity Rules
Output

Prompts

Please view the prompts in the GitHub

evaluate workflow does not require LLM.

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work

https://github.com/tankeehock/wafsmith/tree/main/cli-app/src/lib/llm/prompts

Evaluation Metrics

To understand the performance of WAFSmith, we want to be able to answer two key questions:
e How well the rules are created

With relevance to WAF, the quality of the rules created can be measured by its ability to
act on the payload. A good rule that is created can catch the payload that is designed
for. To measure how well rules are created, the use of the Evasion Rate is adopted.

Evasion Rate

Number of payloads that were not blocked by the ModSecurity Rules as a ratio against
the total number of payloads sent

e How easy itis to govern the rules

Ease of governance is a subjective measure. In this metric, we identified three areas of
indications that tell us how easy it is to govern rules:

1. Ease of Creating Rules
o This can be indicated by the time taken to create rule(s)
2. Ease of Rule Maintenance (Aggregation)

o Aggregation of rules refers to consolidating and improving the ruleset to
reduce the size of the ruleset to a minimal size without compromising the
protection it can offer. This can be observed by the number of rules in the
ruleset

3. Payload Coverage

o This can be observed through the amount of payloads that the ruleset
can detect

Thus, to simplify the measurement, we used 2 key statistical measures as primitive
indicators (below) to measure the three goals above. This leads us to coin the term
"Ease of Management".

Ease of Management

The score will be using a custom metric that is based on two statistical measures in this
experiment:

Ease of Management = Processing Rate * Block Rate

e Processing Rate

Total number of payloads that the party/tool is tasked to process over the total
time taken in seconds. The design of this metric helps us to indicate how
efficiently the tool/party is processing the task.

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work

The higher the Processing Rate, the more likely the party/tool is effective in
processing payloads.

Example - WAFSmith vs Operator

It takes 120 seconds for Operator 1 to develop modsecurity rules targeted at
catching 120 payloads.

Processing Rate: 120 /120 = 1

e.g. It takes 30 seconds for WAFSmith to develop modsecurity rules targeted at
catching 120 payloads

Processing Rate: 120/30 =4

Processing Rate indicates how effective the tool/party is in performing the task of
rule generation along with aggregation for the given set of payloads. The better
Processing Rate indicates the ease of governing these rules!

e Block Rate
The number of payloads blocked over the number of active rules
e.g. 10 rules blocked 100 different payloads for Operator 1
Block Rate: 100/10 =10
e.g. 5 rules blocked 100 different payloads for WAFSmith
Block Rate: 100/5 =20

Block rate simply tells us how effective the rules are in blocking the payloads.

Calculating the Ease of Management Score

Ease of Management (Operator 1): 1 *10 =10
Ease of Management (WAFSmith): 4 * 20 = 80

Interpretation: The higher the Ease of Management score, the easier it is to govern the
rules. In this example, using WAFSmith is much easier to govern by around 8 times
compared to the human counterpart.

WAFSmith is focused on generating new WAF Rules and governing them. The focus of the
evaluation is to compare how much security has improved after using WAFSmith from a set
of baseline rules. In this setup, CRS 4.12.0 ModSecurity rules are used as baseline
benchmarks in which WAFSmith is adopted to improve and govern the ruleset.

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work

Benchmark / Evaluation Setup

Evasion Rate

Web ModSecurity Deployment

Additional Ruleset '
o WAFSmith — PayloadsAllThings

Web Application :
<€ Baseline Ruleset & Simulated Business Traffic
CRSVv4.1.2.0 :

Testing Setup

¢ Simulated Business Traffic should return HTTP status 200
* Payloads that are not blocked will return HTTP status 200
* Payloads that are blocked will return HTTP status 403

Payloads from a well-known Open Source repository, PayloadsAllThings are used to measure
the performance of ModSecurity rules.

1. Benchmarking is performed by measuring the evasion rate from the CRS ruleset
2. After the creation of the rules from WAFSmith, the same set of payloads are sent again.
3. Compare the difference in evasion rates before and after rules from WAFSmith were
deployed.
In addition, simulated business traffic was sent to determine if the rules were blocking

supposedly legitimate traffic. This is an additional simple test to ensure the reliability of the
ruleset.

Evaluation Data

Type of Number of | Source

Attack Payloads

Cross-Site 2655 https://github.com/swisskyrepo/PayloadsAllTheThings/tree/maste

Scripting /XSS %20Injection/Intruders

Open Redirect 325 https://github.com/swisskyrepo/PayloadsAllTheThings/tree/maste
I n%20Redirect/Intruder

SQL Injection 1455 https://github.com/swisskyrepo/PayloadsAllTheThings/tree/maste

r/SQL%20Injection/Intruder

File Inclusion 7943 https://github.com/swisskyrepo/PayloadsAllTheThings/tree/maste
r/File%20Inclusion/Intruders

Command 531 https://github.com/swisskyrepo/PayloadsAllTheThings/tree/maste
Injection r/Command%20Injection/Intruder

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work

https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/XSS%20Injection/Intruders
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/XSS%20Injection/Intruders
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Open%20Redirect/Intruder
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Open%20Redirect/Intruder
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/SQL%20Injection/Intruder
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/SQL%20Injection/Intruder
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/File%20Inclusion/Intruders
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/File%20Inclusion/Intruders
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Command%20Injection/Intruder
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Command%20Injection/Intruder

HTTP Methods

In the benchmarking exercise, both GET Request and POST Request will be evaluated.

GET Request
Payload is embedded in the URL parameter

GET /?payload=<input%2btype%3dtext%2bvalue%3d"XSS"> HTTP/1.1
Host: 127.0.0.1

POST Request

Payload is embedded in the body as an URL Encoded Form Data
POST / HTTP/1.1
Host: 127.0.0.1

Content-Length: 37
Content-Type: application/x-www-form-urlencoded

payload=<input+type=text+value="XSS">

Ease of Management

Humans vs WAFSmith

Human operators will be invited to participate in a controlled test to create ModSecurity Rules
for a given set of payloads. The following data will be collected during the controlled test:

e (A) Time Taken to develop regular expression
e (B) Time Taken to write the ModSecurity Rule(s) after developing the regular expression

e (C) Time Taken to deploy the ModSecurity Rule(s) and perform testing

Human operators are allowed to use any tools online except LLM-based agents.

The purpose of the controlled test is to provide benchmarking of the WAFSmith against human
operators on the Ease of Management metric. The human operators involved in the test are of
varying experience:

e Human Operator 1: Junior Cyber Security Engineer (1-2 YoE)

e Human Operator 2: Mid Level Cyber Security Engineer (2-4 YoE)

e Human Operator 3: Senior Cyber Security Engineer (6-8 YoE)

The difference in seniority provides a more fair and varied test against WAFSmith.

Evaluation Data
The list below contains a set of payloads that the human operators are tasked to work on.

navigator.vibrate(500)

;system(*/usr/bin/id")

XSS
letc/httpd/logs/error_log

onwheel

<

\x3c

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work

1" ORDER BY 1,2,3--+
llllexample.com
etc%2fpasswd%00

A template ModSecurity Rule is provided to the human operators as well.

SecRule ARGS_GET "@rx x='<%" "id:6558757574341,phase:2,deny,status:403,severity:2,tag:'Catch X Open Angle Bracket
Payload in GET URL Params™"

WAFSmith at Scale

Data collection is performed during the benchmarking exercise for the Evasion Rate. The data
collection aims to derive an Ease of Management score for larger payload sets.

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work

Results

Disclaimer and Assumptions

e By default, the code base for WAFSmith has a certain degree of performance
optimization such as multithreading

e Human operators have varying degrees of experience and skill sets which provide data
variation

e Popular LLM offerings such as OpenAl, Claude, Germini, etc are likely to be indifferent

in terms of performance related to WAFSmith.

Evasion Rate

Type of Attack Number of GET POST
Payloads Evasion Rate Evasion Rate
CRS 4.12.0 WAFSmith CRS 4.12.0 WAFSmith
(Before) (After) (Before) (After)

Cross Site 2655 428 (16.12%) 19 (0.72%) 428 (16.12%) 21 (0.79%)
Scripting
Open Redirect 325 227 (69.85%) 29 (8.92%) 225 (69.23%) 10 (3.08%)
SQL Injection 1455 242 (16.63%) 45 (3.09%) 242 (16.63%) 42 (2.89%)
File Inclusion 7943 445 (5.60%) 103 (1.30%) 445 (5.60%) 101 (1.27%)
Command 531 148 (27.87%) 13 (2.45%) 148 (27.87%) 22 (4.14%)
Injection

Improvement Analysis

GET POST
Change in Change in
CRS 4.12.0 WAFSmith Evaded (%) Change CRS 4.12.0 WAFSmith Evaded (%) Change
Payloads Payloads
428 19 409 96% 428 21 407 95%
227 29 198 87% 225 10 215 96%
242 45 197 81% 242 42 200 83%
445 103 342 77% 445 101 344 77%
148 13 135 91% 148 22 126 85%
Avg. Change 86% Avg. Change 87%

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work

Results Analysis

From the evasion rates collected before and after the use of WAFSmith, there are clear and
significant drops in evasion rates. This concludes that WAFSmith can create rules that block

payloads effectively.

e Based on the performance of the other payload types, it is conclusive that the underlying
LLM is indifferent toward the rule creation of either POST or GET requests. However,
the evasion rate for Open Redirect attacks has a significant difference between POST
and GET requests. This is likely due to the temperature configuration of the LLM as it

does tend to produce varying results even with the same prompts.

Ease of Management Benchmarking

Human Operator vs WAFSmith

Review the sample set of ModSecurity Rules generated in Appendix E: Data samples from

Ease of Management Benchmarking

Legend

e Block Task: Number of payloads the rules are developed by the entities are supposed

to block

e (A) Time Taken to develop regular expression

e (B) Time Taken to write the ModSecurity Rule(s) after developing the regular expression

e (C) Time Taken to deploy the ModSecurity Rule(s) and perform testing

e E.O.M Score: Ease of Management Score

Block (A) (B) (C) Time Processing Payloads No. Block E.O.M
Task Rate Blocked Rules Rate Score
Human 10 1533 510 134 2177 0.004593477 4 9 0.4 0.001837
Operator 1
Human 10 1164 150 613 1927 0.005189414 10 10 1 0.005189
Operator 2
Human 10 195 240 270 705 0.014184397 10 10 1 0.014184
Operator 3
WAFSmith 10 121 0.082644628 10 7 1 0.082645
Remarks

e Time measurement for WAFSmith to perform Column (A), (B), and (C) activities are

captured in a single execution flow. Thus, the value is an aggregated value.

e WAFSmith is configured for 10 threads (minimally).

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work

Result Analysis

WAFSmith emerged as a clear winner in the benchmarking exercise with a score that is nearly
80 times better than Human Operator 1. However, it is worth noting that compared to a skilled
operator like Human Operator 3, WAFSmith performed only 5.85 times better. While skills
matter, the difference in score is likely to increase as the scale of the test enlarges (e.g. a larger
payload set).

WAFSmith at Scale

GET Request

Number of Time Processing Number of Number of Block Rate Ease of
Payloads Taken Rate Payloads ModSecurity Managemen
Designed to (s) Blocked Rules t Score
Block

XSs 428 2755.356 0.15533383 382 68 5.617647059 0.873

Open Redirect ., 1320.276 0.171933747 195 % 2.03125 0.349

SQL Injection 242 1008.8 0.220240262 197 19 10.36842105 2.284

File Inclusion 445 1993115 0.223268602 327 %6 3.40625 0.761

Command 148 864.066 0.171283212 133 1 12.09090909 2.071

Injection : : . .

Remarks
e Configured for 50 threads, payload positioned in URL Parameter
POST Request

Number of Time Processing Number of Number of Block Rate Ease of
Payloads Taken Rate Payloads ModSecurity Managemen
Designed to (s) Blocked Rules t Score
Block

Xs$ 428 2738.899 0.156267172 407 38 10.71052632 1.674

Open Redirect 5 1377.747 041633101 213 20 10.65 1.739

SQL Injection 242 1008.873 0.239871619 200 1 18.18181818 4.361

File Inclusion 445 1699.554 0.261833399 327 78 4192307692 1.098

WAFSmith:

LLM based Rule Management Framework to Create Rules that Simply Work

Command

Injection 148 897.811 0.164845385 126 15 8.4 1.385

Remarks

e Configured for 50 threads, payload positioned in URL Parameter

Results Analysis

The Ease of Management scores are visualized in a bar chart below to understand how
WAFSmith performs at scale.

Ease of Governance

M GET B POST

XS8 Open Redirect SQL Injection File Inclusion Command Injection

Visually, we can observe that POST Requests, except Command Injection payloads, WAFSmith
finds it easier to govern! However, POST request for SQL Injection is a case of an outlier in
which it outperforms significantly compared to other attack types.

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work

Discussion

Benefits
The benchmarking exercise concludes that WAFSmith can perform its intended design goals of

Rule Management:
e Creating useful rules
e Simplifying ruleset maintenance and governance
Ultimately, it was developed to reduce the cost of Rule Management in enterprises. Blue Team

can easily adopt this tool in their workflows to improve the efficacy of rule management. The
reduced cost of Rule Management will translate to:

e Stronger security posture
e Increased enterprise agility to respond to threats

e Reduced manpower consumption

Creating useful rules

The Evasion Rate benchmarking demonstrated how much the attack surface can be reduced
through the adoption of WAFSmith. On average, the evasion rate improved by 86.5% after the
adoption of WAFSmith.

Ease of governing ruleset

In the evaluation against human operators, it is evident that WAFSmith can reliably scale and
develop rules that are of quality (maybe even better) in a shorter amount of time. The level of
automation allows enterprises to be unrivaled. In the data collected for the Evasion Rate
benchmarking, WAFSmith scaled relatively well to develop ModSecurity rules that are designed
to block hundreds (>100~400) payloads.

Limitations

Accountability for Al Agent

As the capabilities of Al agents develop, it is more likely that tasks that require lower cognitive
workload will be replaced by these Al agents. However, enterprises have different risk appetites
and trust in Al agents. While WAFSmith has proven to be a reliable agent in developing
high-quality ModSecurity Rules, enterprises may adopt a human-in-the-loop approach to ensure
accountability for WAFSmith output.

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work

Novelty of WAFSmith

Advanced Self-Governing Rule Capabilities based on Al agents

WAFSmith is the first of its kind, aimed at empowering Blue-Teamers across the world with
access to advanced LLM capabilities. Current developments in LLM allow unparalleled levels of
automation and intelligence to perform difficult and laborious tasks. This capability has yet to be
widely accessible in the WAF Rule Management space.

Proven Methodology for Different Kinds of Rule Management Scenarios

The methodology adopted in the solution is highly robust and meticulously designed to handle
different kinds of rule-making scenarios. For instance, the tool can be easily modified to support
Perl-Compatible Regular Expressions (PCRE) to develop ModSecurity rules or, easily modified
to create SNORT rules (refer to Appendix G: Adaptation of WAFSmith for IDPS Solution).

The methodology emphasizes automation and testing to ensure high-quality rules and reliability.
It is designed to operate as a standalone Command Line Interface (CLI) that is not reliant on
any other products. This allows Blue Teamers to easily plug and play the tool in various kinds of
Rule Management scenarios.

Developing open-source rulesets and tailored prompts for wider adoption

The by-products of the development process such as the ModSecurity Rules and Prompts are
released for community usage. These by-products are tested and customized for the solution's
proposed use case. Proposed use cases of the by-products:

e ModSecurity Rulesets (as shared in the repository) produced to improve CRS baselines
are available for everyone to adopt.
e The prompts used in the solution can be adopted by security engineers in LLM-related

application development

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work

Conclusion

The current benchmarking exercises provide positive reinforcement of the novelty and
practicality of WAFSmith. It is the first step in a novel approach toward WAF rule management
and represents the potential in harnessing Artificial Intelligence in cyber-defence strategies.

WAFSmith demonstrated the ability of LLMs to orchestrate reactive action at a fraction of the
cost and time. The cost savings introduced by adopting this work aim to:

e Shift of cognitive burden for human operators to higher-order tasks
e Introduce cost savings through gained productivity
e Reduce Mean Time To Respond (MTTR) for security-related incidents

e Allow bootstrapping of WAF rules

Future Works

On the longer horizon, it is part of a larger initiative to develop and improve security tools within
the open-source space. It is also part of an active research project that is in the domain of Al
and Cybersecurity.

Currently, WAFSmith is part of a Honeypot operation in which ModSecurity is deployed in the
wild to collect data and perform a high degree of WAF governance automation (detecting
attacks to automatically deploy generated rules to protect against these attacks).

The projects below are directions in which WAFSmith will pursue:

Automated WAF Management

WAFSmith represents a significant level of automation that can be introduced to the entire WAF
Management operation. The current benchmarks show that a fully automated WAF solution
using Al agents is feasible and potentially a highly practical solution.

Support for other types of Rule Management Use Cases

A similar use case in which WAFSmith is highly suitable to be adopted is for Snort Rule
Management. Snort Rule Management is similar to how WAF rules are traditionally governance.
In addition, the following use cases can be adopted:

e SAST Tools such as SemGrep

e Host-Based Firewall Rule Management

Al-Based Security Operations Center

As Al continues to make advances, especially in areas of reasoning and decision-making, it is
foreseeable that activities within any cybersecurity organization can be automated and
improved through Al, allowing humans to focus on more important tasks or decision-making
processes. An article by RadiantSecurity further enforces such an idea. WAFSmith represents a
small portion of this Al-driven dream!

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work

https://radiantsecurity.ai/learn/ai-driven-soc/

Release(s)

Version Expected Timeline Release Notes
v1.0.0 17 March 2025 Functional Release
e Aligned with Blackhat e V1.0
Arsenal of Tools o extract
o create
o aggregate
o evaluate

Ruleset

e v1.0 (XSS/SQLi/Command Injection/Open-Redirect)
Prompts

e v1.0 (extract/create/aggregate)

Notes

The initial release is targeted at the specific content:

e extract supports payload extraction on NGINX logs
e create supports creation of ModSecurity rules
e evaluate supports testing of Web Application Attacks

vii By the end of April 2025 Prompts
*Ongoing legal and administrative e viid
discussion

Enhanced extract prompts for various types of text content (e.g.
Apache Logs, Web Content, etc)

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work

Acknowledgments

| would like to acknowledge Hitesh Yadav and Sean Yeoh's efforts to participate in reviewing
both the technical and administrative elements of this project. Their guidance and insights into
how human operators work in high-pressure scenarios, especially in cyber incidents proved
invaluable to the project's motivation and roadmap. Not to forget Jordan Vaughn's continued
support for this project to benefit the open-source community.

To other supportive folks, you know who you are! Thank you!

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work

Appendix A: Case Study of Using OpenAl GPT4 for
Regular Expression Generation

Conversation History: https://chatgpt.com/share/67d75289-8ff4-800f-Qeea-d06b764b3727

The following case study is a simple evaluation performed on a popular Large Language Model
such as OpenAl's ChatGPT ability to mimic a junior cybersecurity analyst writing a ModSecurity
Rule.

1. Extracting the payload from a sample NGINX Log entry

This is a log entry from NGINX
172.20.0.1 - - [14/Mar/2025:05:25:00 +0000] "GET /?payload=
<input+type=text+value="XSS"> HTTP/1.1" 200 13 "-"

"axios/1.7.9" "-"

Can you extract the potentially malicious payload from this entry?

Yes, the potentially malicious payload in the NGINX log entry is:

pgsal & Copy ¥ Edit

<input+type=text+value="XSS">

This appears to be an attempt at Cross-Site Scripting (XSS) by injecting an HTML input element
with a pre-filled value of "XSS" . If this payload is not properly sanitized and rendered on a web page,

it could be used to execute malicious scripts.

2. Creating a Regular Expression

can you create a regular expression to catch this payload?

Yes! You can use a regular expression to detect this type of XSS payload in logs. Here's a regex

pattern that matches variations of this payload:

regex @ Copy v Edit

<input\s+type=[""']1?text["']?\s+value=[""]?.x?[""']?>

Explanation:
e <input\s+ - Matches the opening <input tag followed by at least one space.
e type=["']?text["']? - Matches type=text , optionally enclosed in single or double quotes.

e \s+value=["']?.x?["']? - Matches value="..." or value='...', capturingany content
inside.

e > - Ensures the closing of the tag.

Testing Example Matches:

<input type=text value="XSS">
<input type="text" value='XSS'>
<input type='text' value="alert(1)">

If you want to detect more general XSS attempts, you can expand this regex to cover other input

types or suspicious JavaScript-related attributes. Would you like a broader pattern?

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work

3. Validating the Regular Expression

/<input\s+type=[""]7text[""']?\s+value=[""]7.x72[""1]2> o

o Tons

Kinput type=text value="XSS">

4. Prompting LLM to convert the Regular Expression to a ModSecurity Rule

can you write a modsecurity rule using that regular expression?

Sure! Below is a ModSecurity rule that detects potential XSS attempts using your specified regex
pattern:

apache @ Copy ¥ Edit

SecRule ARGS "@rx <input\s+type=[\"']?text[\"']1?\s+value=[\""]12.x?[\""']?>" \
"i1d:1000001,\
phase:2,\
block,\
msg:'Potential XSS Attack Detected',\
log, \
tag: 'attack-xss',\
severity:"'CRITICAL'"

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work

Breakdown of the Rule:
e SecRule ARGS - Inspects all request parameters (GET , POST, etc.).

s @rx <input\s+type=[\"'l?text[\"']?\s+value=[\""']1?.x?[\"']?> - Uses the regex to

detect malicious input fields.

id:1000001 - Unique rule ID.

e phase:2 - Executes in Phase 2 (after request body is parsed).

+ block - Blocks the request if it matches.

e msg:'Potential XSS Attack Detected' - Logs a message if triggered.
* log - Ensures the request is logged.

s tag:'attack-xss' -> Tags it for easier tracking.

e severity:'CRITICAL' - Marks it as a critical security event.

Optional Enhancements:
» If you want to inspect headers as well, replace ARGS with REQUEST_HEADERS | ARGS | ARGS_NAMES .

« If you prefer only logging without blocking, rn\,l.'.ace block with log,pass .

5. Testing the ModSecurity Rule

Before the implementation of the rule, a curl request was sent to observe the server
response.

3 custom.conf X

e

SecRule ARGS "@rx <input\s+type=[\"'l2text[\"'I12\s+value=[\""']2.%2[\"']?>" \

"id:1000001,\

phase:2,\

block, \

msg: 'Potential XSS Attack Detected',\
log,\

tag: 'attack-xss',\
severity:'CRITICAL'"

Upon deploying the rule, ModSecurity service is restarted and the same curl request is
sent again. The response is the same as what was observed previously.

However, since the rule is configured for block mode, it will not deny the request.
Instead, it should appear in ModSecurity's Audit Log.

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work

alue: “<input type=text value=\"XSS\">')", "reference":"o0,29v8,29","ruleld":"1000001","file":"/etc/modsecurity.d/owasp-crs

A quick search in the logs with the Rule ID shows that the entry appeared! Thus, it
shows that the proof of concept works!

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work

Appendix D: Techniques used to improve WAFSmith

Improving Rule Generation

Generating Random Value instead of relying on LLM

Issue

Impact

Solution

LLM agents are observed not to be very good with random value
generation during evaluation trials

LLM agents are unable to generate ModSecurity rules at scale
due to ID collision when deployed

A random value is generated and substituted into the ModSecurity
rule that was generated by LLM.

Adopting Chain of Thought Prompting

Issue

Impact

Solution

LLM agents may have difficulty processing a complex task such
as creating a valid ModSecurity rule

The rules developed by LLM are not syntactically correct or with
valid semantic meaning.

Provide step-by-step guidance on deriving the output. In
addition, be explicit in the output which the LLM should not
produce. For example "Respond in JSON format only."

Perform preprocessing of data

Issue

Impact

Solution

During payload extract attempts, raw data might be encoded or
formatted. For example, the following Nginx Log entry has been
encoded:

172.20.0.1 - - [14/Mar/2025:05:25:00 +0000] "GET
/?payload=%3Cinput+type%3Dtext+value%3D%E2%80%9CXSS
%E2%80%9D%3E HTTP/1.1" 200 13 "-" "axios/1.7.9" "-"

The LLM agent generated a regular expression that catches the
payload in its encoded form. However, it does not work in
real-world attacks as WAF engines like ModSecurity will perform
URL decoding.

Perform preprocessing steps such as URL encoding, before
supplying the data to the LLM to perform the task. E.g.

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work

172.20.0.1 - - [14/Mar/2025:05:25:00 +0000] "GET
[?payload=<input+type=text+value=“XSS”> HTTP/1.1" 200 13 "-"

"axios/1.7.9" "-"

Improving interaction with Docker Containers

Docker containers are used to orchestrate a consistent testing environment. Various state
checks were implemented to ensure the health of the containers. It is worth noting that an
invalid ModSecurity rule can result in the container being unable to run properly. It is common
for LLM to occasionally produce an invalid ModSecurity rule.

loop (if there is more than 1 ModSecurity rule to be tested)

(

Update Ruleset |[—>

Decommission
Testing
Enviornment

Validate
Container State

Restart
Container

T J

if syntax is invalid, label the current ModSecurity Rule
asinvalid and move to test the next ModSecurity Rule

——>| Perform Testing |——>

Perform Testing

Deploy Testing 3

Enviornment

Testing Orchestration

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work

Appendix E: Data samples from Ease of
Management Benchmarking

The payload below is the payload in which the subsequent ModSecurity Rules are designed to
catch

;system(*/usr/bin/id")

The table below shows the a sampled set of ModSecurity Rule(s) from the experiment for the
given payload

ModSecurity Rule

Human

Operator 1 SecRule ARGS_GET "@rx "\;system\(\'VusrVbinV[A-z]+"
"id:6558757574342,phase:2,deny,status:403,severity:2,tag:'Catch Command injection™

Human

Operator 2 SecRule ARGS_GET "@rx ;(system|SYSTEM)\('V.*V/.*\)"
"id:6558752571341,phase:2,deny,status:403,severity:2,tag:'hacked"

Human
Operator 3 SecRule ARGS_GET "@rx ;system\(.*?")" "id:45362358,phase:2,deny,status:403,severity:2,tag:'hehexd"

WAFSmith
SecRule ARGS "|;system\s*\(\s*['\"]?.*?['\"]\s*\)|"
"id:7778889123,phase:2,deny,status:403,t:normalizePathWhitespace,t:urlDecodeUni,tag:'command-injection’

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work

Appendix F: WAFSmith Workflow(s)

HodSecurits Ruleist

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work

Appendix G: Adaptation of WAFSmith for IDPS Solution

Rule Generation Workflow

ession(s) == ===
ModSecurity Rule(s) Attemptto
aggregate

generated rules

Test Rulels)]%[Decomission Testing, } Aggregate? j Snort Ruls(s) ;—)

1. Tear down environment

LLM Interaction
Parsed (
Traffic | Generate Snort Rules
{ Samples /

i 2 DeployRule

- : . Sei
Docker Containers

payloads and its relevant meta-

data H Befined business
* Due to the sensitive nature of : Traffic Content

= -

assume i

supplied = app

Repeat the process
for each traffic

sample

WAFSmith: LLM based Rule Management Framework to Create Rules that Simply Work

	WAFSmith: An advanced WAF Rule Governance Agent
	WAFSmith
	Abstract
	Problem Statement
	Background
	Default Rulesets are not enough, finetuning is needed
	Writing Good WAF rule(s) is hard
	Bad Rules Break Business Operations

	Current Solutions
	Identified Gaps in the Market
	Limited Access to Advanced Rule Writing Agents in the Market
	
	WAF Rule Management remains a highly manual and laborious process

	
	Proposed Solution - WAFSmith
	Design Motivation
	
	Revised Workflows with WAFSmith
	
	Key Feature(s)
	Ruleset Self-Management Capabilities

	Functional Specification(s)
	Technical Design
	Proposed WAFSmith Workflow(s)
	Extract Workflow
	
	Create Workflow
	Aggregate Workflow

	Prompts
	
	Evaluation Metrics
	Benchmark / Evaluation Setup
	Evasion Rate
	Evaluation Data
	HTTP Methods
	GET Request
	POST Request

	Ease of Management
	Humans vs WAFSmith
	Evaluation Data

	WAFSmith at Scale

	
	Results
	Evasion Rate
	Results Analysis

	Ease of Management Benchmarking
	Human Operator vs WAFSmith
	Result Analysis

	WAFSmith at Scale
	GET Request
	POST Request
	Results Analysis

	Discussion
	Benefits
	Creating useful rules
	Ease of governing ruleset

	Limitations
	Accountability for AI Agent

	Novelty of WAFSmith
	Advanced Self-Governing Rule Capabilities based on AI agents
	Proven Methodology for Different Kinds of Rule Management Scenarios
	Developing open-source rulesets and tailored prompts for wider adoption

	Conclusion
	Future Works
	Automated WAF Management
	Support for other types of Rule Management Use Cases
	AI-Based Security Operations Center

	Release(s)
	
	Acknowledgments
	Appendix A: Case Study of Using OpenAI GPT4 for Regular Expression Generation
	
	Appendix D: Techniques used to improve WAFSmith
	Improving Rule Generation
	Improving interaction with Docker Containers

	
	
	Appendix E: Data samples from Ease of Management Benchmarking
	Appendix F: WAFSmith Workflow(s)
	Appendix G: Adaptation of WAFSmith for IDPS Solution

