
Main

SUMMARY

Web Development Proxy Server and Config File
Author: Sydney Bao (@SydneyBao), Salem Iranloye (@SalemIranloye)

Go Link: flutter.dev/go/web-development-proxy-server

Created: 05/2025 / Last updated: 06/2025

Related issues:

https://github.com/flutter/flutter/issues/51530

https://github.com/flutter/flutter/issues/117444

https://github.com/flutter/flutter/issues/67416

Diagram showing how requests are handled:

PUBLICLY SHARED

https://flutter.dev/go/web-development-proxy-server
https://github.com/flutter/flutter/issues/51530
https://github.com/flutter/flutter/issues/117444
https://github.com/flutter/flutter/issues/67416

PUBLICLY SHARED

WHAT PROBLEM IS THIS SOLVING?

Flutter's current web development configuration relies on CLI arguments and does not
have a development proxy.

Core Issues:

1.​ Decentralized Application Hosting: Hosting a Flutter application on a single server
can be challenging, as there’s no centralized gateway for API requests, forcing
developers to hardcode API URLs in their frontend code and manage separate
configurations for each backend service.

2.​ Persistent CORS Errors: Flutter applications can’t directly call backend APIs without
encountering Cross-Origin Resource Sharing (CORS) errors. This forces developers
into workarounds or complex server-side configurations to resolve the issue.

3.​ Discrepancy with Production Setups: Unlike standard production environments
where reverse proxies are common for traffic management and API security, Flutter
lacks a built-in equivalent. This can lead to unforeseen issues and debugging
challenges when applications are moved from development to deployment.

4.​ Inconsistency with Industry Standards: Developers coming from competing
frameworks often expect a built-in proxy for local development. The absence of a
built-in development proxy, a common and convenient feature in other frameworks,
creates inconsistency with established industry practices, potentially hindering
developer onboarding and workflow efficiency.

5.​ Command-Line Configuration Overhead: Developers often rely on command-line
interface (CLI) arguments to manage web development settings. This approach lacks
a centralized and easily configurable location, increasing the risk of inconsistencies
across different development environments or team members.

BACKGROUND

This section outlines Flutter's current web development server configuration approach and
contrasts it with solutions found in other prominent web development frameworks.

Flutter's Current Web Development Server

Currently, Flutter's web development server runs via flutter run -d chrome or flutter
run -d web-server, and all web development settings are passed directly as CLI
arguments.

Server Configuration and Proxying in Other Frameworks

Leading web development frameworks streamline the management of local development
servers and proxies by centralizing configurations such as host, port, HTTPS, and proxy
rules within dedicated files. This approach enhances both the robustness and
developer-friendliness of the setup process.

●​ Create React App (CRA): Developers configure the port, host, and HTTP settings
under the start field of package.json. They can add a proxy field for basic
proxying. For more advanced needs, such as targeting multiple backend servers or

PUBLICLY SHARED

PUBLICLY SHARED

rewriting URL paths, developers can set up a src/setupProxy.js file. This file
leverages the http-proxy-middleware package, offering granular control over
proxy behavior.​

●​ Vue: Developers handle the host, port, and HTTPS settings in vue.config.js.
Proxy rules can be managed within the devServer → proxy field.​

●​ Vite: host, port, and HTTPS settings are configured in vite.config.js. Developers
can add a server → proxy field to manage proxy rules.​

●​ Angular: Developers configure the host, port, and HTTPS settings in
angular.json. Proxy rules are handled in a separate file, proxy.config.json (or
proxy.config.js), which is then referenced when running ng serve.

Frameworks for Native/Hybrid Development (Different Context):

While not directly comparable to web frameworks due to different browser security
models, it's worth noting how some native/hybrid frameworks handle API communication:

●​ React Native: Developers typically hardcode the IP address or hostname of the
local backend server directly into their API client configurations (e.g.,
Workspace('http://192.168.1.XX:3000')). For complex local setups, developers
might manually set up a custom Node.js proxy server.

Glossary

●​ CLI (Command Line Interface) Command: Text-based instructions for interacting
with a computer system via the command line.

●​ CORS (Cross-Origin Resource Sharing): A browser security mechanism that
prevents web pages from making requests to different origins.

●​ CORS Error: Browser-thrown error when a cross-origin request is blocked due to
missing server permissions.

●​ Development Proxy (or Proxy Server): Local server in frontend development that
forwards API requests, bypassing CORS during development.

●​ Reverse Proxy: A server that sits in front of backend servers, forwarding client
requests, and is often used in production to avoid CORS issues by making requests
appear same-origin.

OVERVIEW

The key features of this proposed solution include:

●​ Dedicated Configuration File: An optional configuration file,
web_dev_config.yaml, will be introduced to centralize web-specific development
settings. This file will enable the persistent and version-controllable definition of
parameters such as headers, host, port, and HTTPS configurations. Unlike
pubspec.yaml, which is utilized during the build process, this file is specifically
used for development. Any settings provided via CLI arguments will take precedence
over those defined in this file. The build halts only if the config file is empty or

PUBLICLY SHARED

None

PUBLICLY SHARED

missing the top-level server key, otherwise the error is logged and the web
development settings revert to a default. ​

●​ Integrated Development Proxy: A built-in proxy allows developers to easily route
API requests from their application through the local development server. This
effectively resolves all CORS errors by making the application and its backend API
appear as if they originated from the same origin. This feature simplifies the
development process by enabling applications to be hosted on a single server
during development, simulate the reverse proxy behavior common in production
environments, and ensure alignment with the streamlined workflows found in
competing web frameworks.

Non-goals

This document focuses on improving the configuration and proxying mechanisms for
Flutter web applications during development. This proposal does not aim to:

●​ Remove CLI arguments
●​ Address production-level web server configurations or reverse proxy setups (e.g.,

Nginx, Caddy) that are typically handled at the deployment level.
●​ Introduce a full-fledged backend server within Flutter's development tooling; the

proxy merely forwards requests to an existing backend.
●​ Resolve any issues related to embedding Flutter web applications within existing

HTML pages or iframes, or the other way around.
●​ Implement solutions for advanced network debugging or traffic inspection tools

beyond basic proxying.
●​ Hold environmental variables (there is already --dart-define-from-file)

USAGE EXAMPLES

This section illustrates how developers will interact with the new configuration system for
Flutter web, demonstrating common use cases for defining server parameters and proxy
rules, along with the specified configuration options.

The proposed web_dev_config.yaml file will organize these parameters under a server
top-level key.

1. Simple Server Configuration and Proxying

Scenario: A developer wants to run the Flutter web app on a specific port and hostname,
and proxy API calls to a local backend.

web_dev_config.yaml

server:

PUBLICLY SHARED

Java

PUBLICLY SHARED

 port: 8080

 host: "0.0.0.0"

 proxy:

 - target: "http://localhost:5000/"

 source: "/users/"

 - target: "http://localhost:4000/"

 source: "/product/"

 replace: ""

Explanation:

●​ Server → port and server → host explicitly define where the development server
will bind.

●​ The server → proxy section handles forwarding requests to the backend,
bypassing CORS.

Flutter App Usage:

// this is Dart source

final users = await http.get(Uri.parse('/users/names'));

// The dev server will forward the request to
http://localhost:5000/users/names

final legacyItem = await
http.get(Uri.parse('/products/item/123'));

// The dev server will forward the request to
http://localhost:4000/products/item/123

Explanation:

●​ server → proxy defines multiple string proxy rules
○​ /users/ and /products/ rules demonstrate direct proxying to different

backend services (localhost:5000 and localhost:4000 respectively),
effectively supporting a microservice architecture where each service has its
own base path

PUBLICLY SHARED

None

None

PUBLICLY SHARED

○​ The replace: “” field indicates that routes that match with /product/ will
remove the path /product/ in the new url

●​ The Flutter application code remains clean, making relative API calls (e.g.,
/users/profile, /api/users). The development server's proxy transparently
handles the complex routing and path transformations, ensuring that the browser's
"same origin" policy is met and CORS issues are avoided during local development.

2. Advance Proxying

Scenario: A developer wants to run the Flutter web app with proxy API calls to a local
backend using regexes and advanced replacement in the url.

web_dev_config.yaml

server:

 port: 8080

 host: "0.0.0.0"

 proxy:

 - target: "http://localhost:5000/"

 regex: "/users/(\d+)/$"

 - target: "http://localhost:4000/"

 regex: "^/users/(\d+)/profile"

 replace: "/users/info"

Explanation:

●​ server → proxy defines regex proxy rules.
○​ /users/(\d+)/$ matches routes that fit this pattern exactly
○​ /users/(\d+)/profile matches routes that start with this path and

replaces that matches path with /users/info

3. Advanced Debugging and Browser Control

Scenario: A developer needs to specify TLS certificates for the dev server.

web_dev_config.yaml

PUBLICLY SHARED

None

PUBLICLY SHARED

server:

 port: 8443

 host: "localhost"

 https:

 cert-path: "/path/to/dev_server.crt"

 cert-key-path: "/path/to/dev_server.key"

Explanation:

●​ Server → https → cert-path and server → https → cert-key-path configure
the development server to use HTTPS with specified certificates.

4. Custom Headers

Scenario: A developer may want to inject custom HTTP headers into the development
server's responses.

web_dev_config.yaml

server:

 headers:

 - name: "X-Custom-Header"

 value: "MyValue"

 - name: "Cache-Control"

 value: "no-cache, no-store, must-revalidate"

 port: 8080

Explanation:

●​ Server → headers allows injecting custom HTTP headers into the responses served
by the development server. This can be useful for various purposes, including
setting security policies or debugging.

PUBLICLY SHARED

None

PUBLICLY SHARED

DETAILED DESIGN/DISCUSSION

Configuration

The proposed configuration for Flutter web development will reside in a
web_dev_config.yaml file located in the root directory of the Flutter project. This file will
contain rules for the web development server, including proxy configurations and general
server parameters, organized in a nested structure.

An example web_dev_config.yaml reflecting the new structure might look like this:

server:

 headers:

 - name: "content-type"

 value: "application/json"

 - name: "X-Custom-Header"

 value: "my-value"

 host: "localhost"

 port: 8080

 https:

 cert-path: "/etc/ssl/certs/my_app.crt"

 cert-key-path: "/etc/ssl/private/my_app.key"

 proxy:

 - target: "http://localhost:3000"

 source: "/api/"

 - target: "https://auth.example.com"

 regex: "/auth/(\d+)"

Proxy Configuration

The server → proxy section is a list of proxy configuration objects where each entry has
a required target field, the base URL of the backend server. Rules without a target field
will be ignored. Requests will be matched based on the listed order of the objects.

PUBLICLY SHARED

None

None

PUBLICLY SHARED

Path

The path tells the server which requests to proxy. It can be one of two types:

●​ String Prefix: A simple path that matches requests with that string using the
source field. Using a string prefix will match the beginning of a request. The
replace (optional) field will replace the first occurrence of the matched path. To
remove the matched path from the redirected route, set replace to ”” or “/”.

○​ Example: /api/
●​ Regular Expression: For more flexible and complex matching use the regex field.

Replace allows for capture groups ($1, $2, etc.). Expressions that end with a $ will
only match with identical routes. Expressions that start with a ^ will match the
beginning of routes. Replace will replace all occurrences of the matched portion of
the request exactly.

○​ Example: /user/\d+/
○​ Example: /users/profile/ would reroute /users/profile/summary but

/users/profile/$ wouldn’t
○​ Example: replace: /users/info would reroute /users/profilename to

/users/infoname

Examples

1. Basic String Proxy

Forwards requests from /api/… to a backend server. A request to /api/v1/users
becomes http://localhost:3000/api/v1/users.

server:

 proxy:

 - target: "https://localhost:3000"

 source: "/api/"

2. String Proxy with Replace

Forwards requests from /api/… but removes the /api/ prefix. A request to
/api/v1/users becomes http://localhost:3000/v1/users.

server:

 proxy:

 - target: "https://localhost:3000"

PUBLICLY SHARED

None

None

PUBLICLY SHARED

 source: "/api/"

 replace: "/"

4. Advanced Regex No Replacement

Forwards requests from /api/… to a backend server. For instance, for a user-id: 123, a
request to /api/users/123 becomes http://localhost:3000/api/users/123.

server:

 proxy:

 - target: "https://localhost:3000"

 regex: "^api/users/(v\d+)"

3. Advanced Regex with Replacement

Remaps a versioned API path. A request to /api/v1/users becomes
http://localhost:3000/users?apiVersion=v1.

server:

 proxy:

 - target: "https://localhost:3000"

 regex: "^api/(v\d+)/(.*)/"

 replace: "/$2?apiVersion=$1"

Implementation

The solution is integrated into the flutter run command for web, providing a seamless
developer experience by loading a central configuration that dictates server behavior.

1. Configuration Loading on flutter run

The process begins when a developer executes flutter run -d chrome or flutter run
-d web-server.

●​ loadDevConfig Execution: Before the web server is initialized, the loadDevConfig
function is called to find and parse a web_dev_config.yaml file.

PUBLICLY SHARED

PUBLICLY SHARED

●​ Configuration Merging: loadDevConfig establishes a clear order of precedence
for settings:

1.​ Command-Line Arguments: Flags like --web-hostname or --web-header
are given the highest priority.

2.​ web_dev_config.yaml File: Values from this file are used if not overridden
by a CLI argument.

3.​ Default Values: A set of sensible defaults is used for any setting not defined
in the other two locations.

●​ DevConfig Instantiation: The result of this process is a single, immutable
DevConfig object that represents the final, consolidated configuration for this run
session.

2. Configuration Data Flow

The DevConfig object is passed through the tool's core components to reach the server:

1.​ The DevConfig object is first passed to the DebuggingOptions data class.
2.​ DebuggingOptions then passes it to the WebDevFS constructor.
3.​ Finally, WebDevFS uses the devConfig object when it calls WebAssetServer.start,

ensuring the server has all the necessary settings.

3. Data Models (devfs_config.dart)

All configuration is structured around a set of clear data classes:

●​ DevConfig: The primary class holding the entire server configuration, including
host, port, a list of header objects, and a list of proxy rule objects.

●​ ProxyRule: An abstract class for proxy rules, implemented by:
○​ SourceProxyRule: For simple path prefix matching.
○​ RegexProxyRule: For advanced matching using regular expressions.

●​ HttpsConfig: Holds paths to TLS certificate and key files.

4. Web Server and Proxy Middleware

The implementation centers on refactoring WebAssetServer and using a shelf
middleware pipeline.

●​ Refactored WebAssetServer.start: The method signature will be simplified to
accept a single, required devConfig parameter, consolidating all web server
settings into one object and making the code cleaner.

●​ Proxy Middleware: The proxy is implemented via proxyMiddleware. This
middleware iterates through the proxy list from the DevConfig object. When an
incoming request path matches a rule, in order listed in the yaml file, it forwards the
request to the specified target, applying any replacement logic.

●​ Request Handling Pipeline (shelf.Cascade): The server defines a clear order of
precedence for handling requests:

1.​ DWDS Handler: The Dart Web Dev Service for debugging gets the first
opportunity to handle the request.

2.​ Proxy Middleware: If not handled, the request is passed to the
proxyMiddleware.

PUBLICLY SHARED

PUBLICLY SHARED

3.​ Asset Server Handler: If no proxy rule matches, the request falls through to
the main server to serve project assets like index.html and JavaScript files.

5. Error Handling and Logging

The system provides clear feedback to the developer:

●​ File Not Found: If web_dev_config.yaml is not found the server proceeds with
defaults and CLI arguments.

●​ Parsing Success: When the file is loaded, the status is logged and the parsed
content is logged when --verbose.​
Syntax Error: If the YAML file is malformed, the build is halted immediately, and a
detailed error from the package:yaml parser is thrown, including the line, column,
and problematic text to help the user fix it quickly.

ACCESSIBILITY

This proposed change, focusing on build-time configuration, has no impact on the
accessibility features or behavior of the Flutter web application itself at runtime.

INTERNATIONALIZATION

This proposed change, being a build-time configuration, has no impact on the
internationalization (i18n) capabilities or runtime behavior of the Flutter web application.

INTEGRATION WITH EXISTING FEATURES

The proposed configuration system is designed for seamless integration with existing
Flutter web development workflows. The introduction of the web_dev_config.yaml file is
optional, meaning current projects will remain unaffected unless a developer explicitly
chooses to implement it.

This approach ensures backward compatibility and provides a clear opt-in path: developers
can transition to using the new configuration by simply creating the web_dev_config.yaml
file in their project's root directory. Furthermore, by aligning the configuration and proxying
mechanisms with established patterns in other popular web frameworks, the learning
curve for developers adopting this feature should be minimal, leading to a more intuitive
and efficient transition.

TESTING PLAN

Unit Tests (proxy_test.dart):

●​ ProxyRule.fromYaml
○​ Verify YAML configurations are parsed correctly and create appropriate

ProxyRule subclass (SourceProxyRule or RegexProxyRule)
●​ RegexProxyRule

○​ Verify RegexProxyRule instances are created correctly when a regex key is
present, with and without a replace key

PUBLICLY SHARED

PUBLICLY SHARED

○​ Verify regex paths are matched accurately
■​ ^ matches the beginning of a request
■​ $ matches the request exactly

○​ Ensure the replace method correctly applies replacements using capturing
groups

■​ Removes the regex path exactly from the redirected route
■​ Removes all occurrences of the regex path if it doesn’t start with ^

●​ SourceProxyRule
○​ Verify SourceProxyRule instances are created correctly when a source key

is present, with and without a replace key
○​ Verify source paths are matched accurately

■​ Matches the beginning of a request only
○​ Ensures the replace method works as expected

■​ An empty string removes the path from the redirected route
■​ Removes first occurrence of the source path

●​ ProxyRequest
○​ Verify all essential elements of the original request are carried over to the

proxied request
■​ HTTP method (e.g., POST, GET)
■​ Body content (including empty bodies)
■​ Headers (excluding Content-Length)
■​ Context information

○​ Ensure the url of the proxied request is correctly updated to the
finalTargetUrl

○​ Ensure the proxyRequest correctly handles various HTTP methods (GET,
POST, PUT, DELETE, PATCH)

●​ ProxyMiddleware
○​ Verify that if no ProxyRule matches the incoming request’s path, the

middleware calls the innerHandler
○​ Verify that if an exception occurs during the proxying process (e.g., due to an

invalid target URL), the middleware gracefully falls through and calls the
innerHandler

○​ Ensure appropriate error messages are logged when a proxy error occurs

Integration Tests (demo):

Run flutter run with:

●​ No web_dev_config.yaml present → no proxying occurs, server starts normally.
●​ Empty web_dev_config.yaml → error is logged and build halts.
●​ Missing server top-level key → error is logged and build halts
●​ Missing proxy.target key → error is logged and rule is ignored. Build continues.
●​ Headers, host, port, HTTPS, and proxy are wrong types → Error is logged. Setting is

ignored. Build continues.
●​ web_dev_config.yaml and a CLI argument are present → Overridden status is

logged. CLI argument is used along with the other settings in the
web_dev_config.yaml

PUBLICLY SHARED

PUBLICLY SHARED

DOCUMENTATION PLAN

This section outlines the plan for user-facing documentation to support the new Flutter
web development server configuration. The documentation will be focused on practical
usage and examples.

1. The web_dev_config.yaml Guide

This will be the main "getting started" guide. It will explain:

●​ Purpose: How this file provides a persistent, shareable configuration for the web
dev server.

●​ Location: Where to create the file (web_dev_config.yaml).
●​ Basic Structure: How all settings must be configured and nested under a top-level

server: key.

2. Basic Server Configuration

This section will detail the common server settings. For each setting, the documentation
will explain its purpose and provide a syntax example.

●​ host and port: How to change the web server's binding address and port.
●​ headers: How to provide a list of global HTTP header objects to be injected on every

response. The documentation will specifically show an example with a quoted value
(like Cache-Control) to demonstrate handling of special characters.

3. Advanced Proxy Configuration

This will be the most detailed section, explaining how to solve CORS issues and route API
requests. It will be broken down into clear concepts:

●​ The proxy List: Explains that proxy is a list where each proxy configuration object
has a target and a path to match (either a string or regex).

●​ Path:
○​ Describe how to use a simple string prefix using the source field for basic

path matching (e.g., /api/).
○​ Describe how to use a regular expression using regex filed for complex

matching.
●​ Proxy Behavior:

○​ Document the required target property for defining the backend URL.
○​ Document the optional replace property, explaining the difference between

using replace with:
1.​ Source: replaces the first occurrence of a match
2.​ Regular expression: For complex URL remapping using regex and

capture groups. Replaces all occurrences.

4. Examples Gallery

To make the feature easy to adopt, the documentation will include a gallery of commented,

PUBLICLY SHARED

PUBLICLY SHARED

copy-paste-ready YAML examples for the most common use cases:

●​ A basic API proxy that forwards a path without changes.
●​ A proxy that strips the matched prefix from the URL.
●​ An advanced example that uses a regular expression and capture groups to remap a

versioned API path to a query parameter.

5. Configuration Precedence

A small but critical section to prevent user confusion, explicitly stating the override order:

1.​ Command-Line Arguments (e.g., --web-port)
2.​ web_dev_config.yaml settings
3.​ Built-in default values

MIGRATION PLAN

Updating something that is not backwards compatible. Marking the CLI parameters as
deprecated.

OPEN QUESTIONS

●​ How will maintenance overtime look?
●​ Should the checked_yaml package be added as a dependency to improve error

messaging?
●​ While the errors are logged, should the build process halt for additional points of

failure (e.g., Invalid setting types, proxy rules)?
●​ What parameters should be added to the config file?

FUTURE EXTENSIONS

●​ Would introducing devConfig flavors (e.g., devconfig.local.yaml,
devconfig.staging.yaml), managed via the --dev-config CLI parameter (e.g.,
flutter run -d chrome --dev-config devconfig.staging.yaml be an
effective way to manage different deployment environments?

●​ Should we support proxying WebSockets?
●​ Should we support glob syntax to define the path and replace rules within the

development proxy?

PUBLICLY SHARED

	Main
	SUMMARY
	WHAT PROBLEM IS THIS SOLVING?
	BACKGROUND
	Flutter's Current Web Development Server
	Server Configuration and Proxying in Other Frameworks
	Frameworks for Native/Hybrid Development (Different Context):

	Glossary

	OVERVIEW
	Non-goals

	USAGE EXAMPLES
	1. Simple Server Configuration and Proxying
	2. Advance Proxying
	3. Advanced Debugging and Browser Control
	4. Custom Headers

	DETAILED DESIGN/DISCUSSION
	Configuration
	Proxy Configuration
	Path
	Examples

	Implementation
	1. Configuration Loading on flutter run
	2. Configuration Data Flow
	3. Data Models (devfs_config.dart)
	4. Web Server and Proxy Middleware
	5. Error Handling and Logging

	ACCESSIBILITY

	TESTING PLAN
	DOCUMENTATION PLAN
	1. The web_dev_config.yaml Guide
	2. Basic Server Configuration
	3. Advanced Proxy Configuration
	4. Examples Gallery
	5. Configuration Precedence

	MIGRATION PLAN
	OPEN QUESTIONS
	FUTURE EXTENSIONS

