Learning Target 2

1. Write the general equation and an example for the following reactions.

Type of Rxn	General Equation	Example
Synthesis	$A + B \rightarrow AB$	Come up with one on your own
Decomposition	$AB \rightarrow A + B$	Look in your notes if you need to
Single Replacement	$AB + C \rightarrow AC + B$	
Double Replacement	$AB + CD \rightarrow AD + CB$	
Combustion	$C_7H_7 + O_2 \rightarrow CO_2 + H_2O$	

Learning Target 1 and 3

2. What is the law of conservation of mass. Why does it matter when balancing chemical equations? Mass can't be created or destroyed. This is important when balancing chemical equations because the mass and matter that you start with must be the same as when you finish a reaction. The reactants must equal the products.

3. B a	alance	the	tollowing	equations
---------------	--------	-----	-----------	-----------

Determine the Type of Rxn

_2_Fe + _3_ $H_2SO_4 \rightarrow _Fe_2(SO_4)_3 + _3 H_2$	single			
$_{2}$ $_{2}$ $_{6}$ $_{6}$ $_{7}$ $_{0_{2}}$ $_{0_{2}}$ $_{6}$ $_{1}$ $_{1}$ $_{2}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{3}$ $_{3}$ $_{4}$ $_{3}$ $_{4}$ $_{3}$ $_{4}$ $_{4}$ $_{2}$ $_{3}$ $_{3}$ $_{4}$ $_{4}$ $_{2}$ $_{3}$ $_{4}$ $_{4}$ $_{2}$ $_{3}$ $_{4}$ $_{3}$ $_{4}$ $_{4}$ $_{2}$ $_{3}$ $_{4}$ $_{4}$ $_{2}$ $_{3}$ $_{4}$ $_{4}$ $_{2}$ $_{3}$ $_{4}$ $_{4}$ $_{2}$ $_{3}$ $_{4}$ $_{4}$ $_{2}$ $_{4}$ $_{4}$ $_{2}$ $_{4}$ $_{4}$ $_{2}$ $_{4}$ $_{4}$ $_{2}$ $_{4}$ $_{4}$ $_{2}$ $_{4}$ $_{4}$ $_{4}$ $_{2}$ $_{4}$	Combustion			
$\underline{\hspace{1cm}}$ KOH + $\underline{\hspace{1cm}}$ H ₃ PO ₄ \rightarrow $\underline{\hspace{1cm}}$ K ₃ PO ₄ + $\underline{\hspace{1cm}}$ H ₂ O	Double			
$__SnO_2 + __H_2 \rightarrow __Sn + __H_2O$	Single			
$_2$ _NH ₃ + $_2$ O ₂ \longrightarrow NO + $_3$ H ₂ O	Double?? Not always obvious!			
$\underline{}_2$ KNO ₃ + $\underline{}_1$ H ₂ CO ₃ \rightarrow $\underline{}_1$ K ₂ CO ₃ + $\underline{}_2$ HNO ₃	Double			
$B_2Br_6 + \underline{\hspace{1cm}} HNO_3 \rightarrow \underline{\hspace{1cm}} B(NO_3)_3 + \underline{\hspace{1cm}} HBr \underline{\hspace{1cm}} Double\underline{\hspace{1cm}}$				
$\underline{ 2}_{GaF_3} + \underline{ 3}_{Li_2}SO_3 \rightarrow \underline{ Ga_2(SO_3)_3} + \underline{ 6}_{LiF}$ Double				
$__(NH_4)_3PO_4 + __Pb(NO_3)_4 \rightarrow __Pb_3(PO_4)_4 + __NH_4NO_3 ___Double __$				
$__SeCl_6 + __O_2 \rightarrow __SeO_2 + _3_Cl_2$	Single			

- 4. Write and Balance the following word equations
 - a. Hydrogen and oxygen react to form water.

$$2H_2 \ + O_2 \quad \rightarrow \quad 2H_2O$$

b. Zinc reacts with sulfuric acid to produce zinc sulfate and hydrogen

$$Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$$

c. Bromine and potassium chloride are produced in the reaction of potassium bromide with chlorine gas.

$$KBr + Cl_2 \rightarrow Br_2 + 2KCl$$

d. Selenium hexachloride reacts with oxygen to produce selenium dioxide and chlorine.

$$SeCl_6 + O_2 \rightarrow SeO_2 + 3Cl_2$$

e. Lead reacts with Iron (II) sulfate to produce lead (II) sulfate and iron.

Pb +
$$FeSO_4 \rightarrow PbSO_4 + Fe$$

Need more practice? Do the Word Equation WS

5. a. Write the chemical reaction for the combustion of octene (C₈H₁₆)

$$C_8H_{16} \hspace{0.3cm} + \hspace{0.3cm} 12O_2 \hspace{0.3cm} \rightarrow \hspace{0.3cm} 8CO_2 \hspace{0.3cm} + \hspace{0.3cm} 8H_2O$$

- b. What is the empirical formula for octene? __CH₂_____
- 6. Use correct nomenclature to write word equations from the last 3 equations that you balanced in question #3.

Gallium fluoride reacts with lithium sulfite to produce gallium sulfite and lithium fluoride.

Ammonium phosphate reacts with lead (IV) nitrate to produce Lead(IV) phosphate and ammonium nitrate.

Selenium hexachloride reacts with oxygen to produce selenium and chlorine.

Learning Target 4

- 7. Predict the product of the following reactions using the activity series. Balance the equations. If no reaction takes place, indicate why.
 - a. $2Cd + H_2O \rightarrow 2Cd(OH)_2 + H_2$ (the water must be _steam____)
 - b. $2 \text{ Co}^{3+} + 3\text{H}_2\text{SO}_4 \rightarrow \text{Co}_2(\text{SO}_4)_3 + 6\text{H}_2$
 - c. ${}^{2}Pb^{2+} + O_2 \rightarrow {}^{2}PbO$
 - d. Ni + H_2O \rightarrow no reaction
 - e. $AI(NO_3)_3 + Ni \rightarrow no reaction$

8. Predict the products of the following reactions and balance the equations.

a.
$$Ca(NO_3)_2$$
 + 2 NaBr \rightarrow 2NaNO₃ + CaBr₂

$$b. \hspace{0.5cm} \textbf{2AIF}_3 \hspace{0.2cm} \textbf{+} \hspace{0.2cm} \textbf{3Na}_2 SO_4 \hspace{0.2cm} \rightarrow \hspace{0.2cm} \textbf{Al}_2 (SO_4)_3 \hspace{0.2cm} \textbf{+} \hspace{0.2cm} \textbf{6NaF}$$

c.
$$C_5H_{12} + 8O_2 \rightarrow 5CO_2 + 6H_2O$$

d. 2Mg +
$$O_2 \rightarrow 2MgO$$

e.
$$2H_2 + O_2 \rightarrow 2H_2O$$

f.
$$2AICI_3 \rightarrow 2AI + 3CI_2$$

Need more practice? Do the Predicting Products WS 2