Lesson 9 Outline

Conservation Genetics

Learning Objectives

At the end of the lesson, you will be able to answer the following questions:

- 1. Why is genetic variation important and how do we quantify it?
- 2. What are the similarities and differences between genetic drift and inbreeding?
- **3.** How can we use our knowledge of adaptation, genetic drift, and inbreeding for applied conservation genetics?

Learning Objective 1: Why is genetic variation important and how do we quantify it?

Make a prediction: is there likely to be resistance among your banana plants? Why?

Why is genetic variation important for adaptation to changing environments?

Observed heterozygosity (H_0):

Quiz Yourself: Calculate H_O

Locus	YY	YB	ВВ	Но

1	0	0	100	
2	0	5	95	
3	60	23	17	
4	25	13	62	

Mean H_0 =

Expected heterozygosity (H_E):

Fixation Index (F_{st}):

Learning Objective 2: What are the similarities and differences between genetic drift and inbreeding?

Genetic Drift:

- 1.
- 2.
- 3.

Let's Experiment: Imagine we have 5 heterozygous (Bb) rabbits

1. Record the initial allele frequencies

- 2. Generate the next generation by flipping two coins (B: heads, b: tails). Repeat for 5 total offspring
- 3. Record the allele frequencies in the next generation

Offspring ID	Replicate 1
1	
2	
3	
4	
5	
Freq(B)	

Summary of Genetic drift:

1.

2.

What are Founder Events?

What are Bottlenecks?

What is the relationship between the strength of drift and population size?

Inbreeding:

Inbreeding depression:

Think Critically: assuming random mating, is mating between cousins (A and B) more likely in pop 1 or 2?

Inbreeding Coefficient (F_{IS}):

Quiz Yourself: Calculate F_{IS}

Mean $H_0 = 0.103$

Mean $H_F = 0.222$

Let's Review drift and inbreeding in small populations:

- [T/F]: genetic drift often helps natural selection purge problematic mutant alleles
- [T/F]: if problematic mutant alleles are in a population, inbreeding can result in them being expressed more frequently
- [T/F]: genetic drift is stronger in small populations
- [T/F]: inbreeding is less frequent in small populations

Learning Objective 3: How can we use our knowledge of adaptation, genetic drift, and inbreeding for applied conservation genetics?

Make a prediction: how has genetic variation changed over time for the Florida panther?

Quiz yourself: [drift/inbreeding] is responsible for disease alleles being maintained in the population and [drift/inbreeding] is responsible for those alleles being expressed

Heritage Group	Total Number of Individuals	Average	Proportion of Male	Proportion with
	Observed Over Time Period	Heterozygosity	Cryptorchid	Atrial Septal Defects
Prior to Texas Cougar Introduction				
1970–1984	33	0.231	0.33	0.33
1985–1989	37	0.208	0.50	0.16
1990–1995	62	0.190	0.63	0.21

Quiz yourself: If Texas Cougars went through the same bottleneck as the Florida Panthers (33 individuals for 25 generations), what would be resulting heterozygosity given H_0 = 0.318

- A) 0.246
- B) 0.217
- C) 0.176

