
Temporary Table Design
 Kangli Mao Ming Zhang

This document is open to the community

Introduction​ 1

Motivation or Background​ 1

Detailed Design​ 2

Test Design​ 2
Functional Tests​ 2

Scenario Tests​ 2

Compatibility Tests​ 2

Benchmark Tests​ 3

Impacts & Risks​ 3

Investigation & Alternatives​ 3

Unresolved Questions​ 3

Design Review​ 3

Introduction

A temporary table is a special table whose rows data are only temporarily available.

TiDB will implement both local temporary tables and global temporary tables. The local
temporary table is basically compatible with MySQL temporary tables. The global
temporary table is a subset of the SQL standard, which supports only one table commit
action.

For a local temporary table, it is visible only within the current session, and the table is
dropped automatically when the session is closed.

For a global temporary table, the table schema is visible to all the sessions, but the
changes into the table are only available within the current transaction, when the
transaction commits, all changes to the global temporary table are discarded.

Syntax
The syntax of creating and dropping a global temporary table:
```sql 
CREATE GLOBAL TEMPORARY TABLE tbl_name (create_definition)  

mailto:kangli.mao@pingcap.com
mailto:zhangming@pingcap.com
https://docs.google.com/document/d/1s36LjtxP6uD6dsRVyN1i3f9-yG7lkon4bm083jZPfCg/edit#heading=h.xj2g14u1tyzh
https://docs.google.com/document/d/1s36LjtxP6uD6dsRVyN1i3f9-yG7lkon4bm083jZPfCg/edit#heading=h.xj2g14u1tyzh
https://docs.google.com/document/d/1s36LjtxP6uD6dsRVyN1i3f9-yG7lkon4bm083jZPfCg/edit#heading=h.lsieju6p4qm4
https://docs.google.com/document/d/1s36LjtxP6uD6dsRVyN1i3f9-yG7lkon4bm083jZPfCg/edit#heading=h.lsieju6p4qm4
https://docs.google.com/document/d/1s36LjtxP6uD6dsRVyN1i3f9-yG7lkon4bm083jZPfCg/edit#heading=h.r6tgddlrmdcj
https://docs.google.com/document/d/1s36LjtxP6uD6dsRVyN1i3f9-yG7lkon4bm083jZPfCg/edit#heading=h.r6tgddlrmdcj
https://docs.google.com/document/d/1s36LjtxP6uD6dsRVyN1i3f9-yG7lkon4bm083jZPfCg/edit#heading=h.xffx4ea00cr2
https://docs.google.com/document/d/1s36LjtxP6uD6dsRVyN1i3f9-yG7lkon4bm083jZPfCg/edit#heading=h.xffx4ea00cr2
https://docs.google.com/document/d/1s36LjtxP6uD6dsRVyN1i3f9-yG7lkon4bm083jZPfCg/edit#heading=h.ru7ai5x0dcr8
https://docs.google.com/document/d/1s36LjtxP6uD6dsRVyN1i3f9-yG7lkon4bm083jZPfCg/edit#heading=h.ru7ai5x0dcr8
https://docs.google.com/document/d/1s36LjtxP6uD6dsRVyN1i3f9-yG7lkon4bm083jZPfCg/edit#heading=h.eqtwb0b0yykc
https://docs.google.com/document/d/1s36LjtxP6uD6dsRVyN1i3f9-yG7lkon4bm083jZPfCg/edit#heading=h.eqtwb0b0yykc
https://docs.google.com/document/d/1s36LjtxP6uD6dsRVyN1i3f9-yG7lkon4bm083jZPfCg/edit#heading=h.el5o2thfivme
https://docs.google.com/document/d/1s36LjtxP6uD6dsRVyN1i3f9-yG7lkon4bm083jZPfCg/edit#heading=h.el5o2thfivme
https://docs.google.com/document/d/1s36LjtxP6uD6dsRVyN1i3f9-yG7lkon4bm083jZPfCg/edit#heading=h.pagaiwfuoibr
https://docs.google.com/document/d/1s36LjtxP6uD6dsRVyN1i3f9-yG7lkon4bm083jZPfCg/edit#heading=h.pagaiwfuoibr
https://docs.google.com/document/d/1s36LjtxP6uD6dsRVyN1i3f9-yG7lkon4bm083jZPfCg/edit#heading=h.fvkn82u63pqv
https://docs.google.com/document/d/1s36LjtxP6uD6dsRVyN1i3f9-yG7lkon4bm083jZPfCg/edit#heading=h.fvkn82u63pqv
https://docs.google.com/document/d/1s36LjtxP6uD6dsRVyN1i3f9-yG7lkon4bm083jZPfCg/edit#heading=h.vihr7an8640f
https://docs.google.com/document/d/1s36LjtxP6uD6dsRVyN1i3f9-yG7lkon4bm083jZPfCg/edit#heading=h.vihr7an8640f
https://docs.google.com/document/d/1s36LjtxP6uD6dsRVyN1i3f9-yG7lkon4bm083jZPfCg/edit#heading=h.savbk4z4wm3p
https://docs.google.com/document/d/1s36LjtxP6uD6dsRVyN1i3f9-yG7lkon4bm083jZPfCg/edit#heading=h.savbk4z4wm3p
https://docs.google.com/document/d/1s36LjtxP6uD6dsRVyN1i3f9-yG7lkon4bm083jZPfCg/edit#heading=h.89grda8gcym8
https://docs.google.com/document/d/1s36LjtxP6uD6dsRVyN1i3f9-yG7lkon4bm083jZPfCg/edit#heading=h.89grda8gcym8


[ENGINE=engine_name] 
ON COMMIT DELETE ROWS; 
 

DROP TABLE tbl_name; 
``` 

The syntax of creating and dropping a session(local) temporary table:
```sql 
CREATE TEMPORARY TABLE tbl_name (create_definition)  

[ENGINE=engine_name]; 
 
DROP [TEMPORARY] TABLE tbl_name; 
``` 

In the following sections, session temporary tables and local temporary tables are used
interchangeably.

Visibility of table definition
There are 2 kinds of table definition visibility.

●​ Global: global temporary tables are visible to all sessions. These tables only need to
be created once and the metadata is persistent.

●​ Local: local temporary tables are visible to the session that creates them. These
tables must be created in the session before being used and the metadata is only
kept in memory.

Visibility of data
There are 2 kinds of data visibility:

●​ Session: when the table is a session temporary table, the data will be kept after a
transaction commits. Subsequent transactions will see the data committed by the
previous transactions.

●​ Transaction: when the table is defined as `ON COMMIT DELETE ROWS`, this data
will be cleared automatically after a transaction commits. Subsequent transactions
won’t see the data committed by the previous transactions.

Storage engines
TiDB uses TiKV and TiFlash to store the data of normal tables. This is also true for
temporary tables by default because MySQL does so. However, temporary tables
sometimes are used to boost performance, so it’s also reasonable to support in-memory
temporary tables. There are 2 kinds of storage engines available:

●​ Memory or TempTable: TiDB keeps data in memory, and if the memory consumed
by a temporary table exceeds a threshold, the data will be spilled to the local disk
on TiDB. This is the default storage engine, which is different from MySQL.

●​ InnoDB: TiDB stores data on TiKV and TiFlash with more than one replica, just like
normal tables. According to MySQL, this is the default storage engine, even for
temporary tables.

Motivation or Background

Temporary tables are useful in applications where a result set is to be buffered
(temporarily persisted), perhaps because it is constructed by running multiple DML
operations.

The purposes of temporary tables include:

●​ Usability. Temporary tables are typically for temporary use. Applications don’t need
to frequently truncate the table.

●​ Performance. In-memory temporary tables are stored in memory, which boosts
performance.

●​ Materialize middle data for queries. Some queries apply internal temporary tables
for materializing middle data, such as CTE.

Detailed Design

Metadata

The table ID of global temporary tables must be globally unique, while the local
temporary tables don’t. However, logical or physical plans involve table IDs, which means
the temporary table IDs must be different from the normal table IDs. To achieve this goal,
it’s straightforward to also allocate local temporary table IDs globally.

For a global temporary table, its table name should not be duplicated with a normal table.
For a local temporary table, when its name conflicts with an existing table, it will take a
higher priority. We can keep the temporary tables in a local schema, and overwrite the
original one. The databases where temporary tables belong depend on the identifier in
`CREATE TABLE` statements, just like normal tables.

Since the metadata of global temporary tables are persistent on TiKV, it’s straightforward
to execute DDL in the same procedure as normal tables. However, the metadata of local
temporary tables are only kept in the memory of the current TiDB instance, so we can
bypass the complex online DDL procedure. We need only to generate the metadata
locally and then merge it into the information schema. Thus, users cannot see the DDL jobs
of local temporary tables through `ADMIN SHOW DDL JOBS`.

Local temporary tables don’t support altering table operations because few users will do
that. TiDB should report errors when users try to do that.

As all DDL statements do, any DDL on a global temporary table will cause an implicit
commit. However, creating and dropping a local temporary table doesn’t cause an implicit
commit, according to [the MySQL
documentation](https://dev.mysql.com/doc/refman/8.0/en/implicit-commit.html).

Each temporary table belongs to its own database. Local temporary tables have a very
loose relationship with databases. Dropping a database does not automatically drop any
local temporary tables created within that database. The local temporary tables still stay in
a virtual database with the same name.

Truncating global temporary tables also conforms to the online DDL procedure, which
affects other sessions. However, it’s different for local temporary tables because the
metadata is kept in memory. Truncating local temporary tables just drops the current
metadata and creates a new one in memory.

DDL operations, including those using `INSTANT` and `COPY` algorithms, are simple to
apply on global temporary tables. For example, adding an index on a global temporary
table is easy, because the table must be empty before adding the index. This benefits from
implicit commit before adding the index. Local temporary tables, on the other hand, do
support adding indexes, as other altering table operations.

Some options in `CREATE TABLE` statements are not suitable for temporary tables. These
options include: `AUTO_RANDOM`, `SHARD_ROW_ID_BITS`, `PRE_SPLIT_REGIONS`,
`PARTITION BY`, `FOREIGN KEY`. Similarly, some related DDL operations are not
supported, such as `SPLIT TABLE`, `SHOW TABLE REGIONS`, `ALTER PLACEMENT
POLICY`. Table partition option is useless to a temporary table in the real use cases, so it’s
also not supported. Errors should be reported when users declare such options in the
statements.

Since some options are not suitable for temporary tables, when a user creates a temporary
table from the `CREATE TABLE LIKE` statement and the source table has these options,
an error should be reported.

Other options will be kept. For example, clustered indexes and secondary indexes are kept
because they can improve performance.

Altering table types is not allowed, since few users will do that:

●​ Altering a temporary table to a normal table or conversely.
●​ Altering a global temporary table to a local temporary table or conversely.
●​ Altering the storage engine of temporary tables.

The result of `SHOW TABLES` contains global temporary tables, but not local temporary
tables. The motivation is that local temporary tables are only for temporary usage, so the

https://dev.mysql.com/doc/refman/8.0/en/implicit-commit.html

user should know what he is doing. However, `SHOW CREATE TABLE` works for all
temporary tables.

Similarly, system tables `TABLES` and `COLUMNS` in `information_schema` do not
contain local temporary tables, but they contain global temporary tables. For global
temporary tables, the value of field `TABLE_TYPE` in `information_schema.TABLES` is
`GLOBAL TEMPORARY TABLE`.

`ADMIN CHECK TABLE` and `ADMIN CHECKSUM TABLE` are used to check data integrity
of the table. Data of temporary tables might also be corrupted due to unexpected
problems, but it’s impossible to check them because they are invisible to other sessions. So
TiDB doesn’t support these commands.

Creating views on a global temporary table makes sense, and the view will also be
persistent on TiKV. However, it’s unreasonable to persist a view that is based on a local
temporary table, because the table will be discarded when the session ends.

As the metadata of global temporary tables are persistent on TiKV, the binlog of DDL
should also be exported. However, this is unnecessary for local temporary tables.

Optimizer
Statistics of temporary tables are very different from those of normal tables. The data of
each temporary table is invisible to other sessions, so it’s unnecessary to persist statistics
on TiKV. On the other hand, even if the sizes of temporary tables are relatively small, it’s
also necessary to consider statistics since it may improve the query performance
significantly.

Updating statistics is a little different from normal tables. We can’t rely on `AUTO
ANALYZE` anymore, because the lifecycle of one session is relatively short, it’s unlikely to
wait for `AUTO ANALYZE`. What’s more, `AUTO ANALYZE` runs in background sessions,
which means they can’t visit the temporary data.

It’s also unreasonable to force users to run `ANALYZE TABLE` periodically in applications.
Intuitively, there are 2 ways to maintain statistics:

●​ Update statistics once updating the table. When users run `ANALYZE TABLE`, TiDB
updates statistics in the current session, instead of in background sessions.

●​ Instead of maintaining statistics, collecting needed statistics before each query is
another option. The collection can be boosted by sampling. `ANALYZE TABLE`
needs to do nothing in this way.

Both ways are also easy to implement, and it’s not concrete that we really need statistics
for temporary tables for now. So we only maintain row count, and just skip maintaining
NDV, selectivity and others until there’s a need.

Statistics of the same global temporary table are different in different sessions, so every
session keeps a copy of statistics for each global temporary table. However, the statistics
of normal tables are stored in a global cache, which can be visited concurrently. So there
needs to be a way to store the statistics of global temporary tables separately.

Obviously, the cost of reading temporary tables is much lower than reading normal tables,
since TiDB doesn’t need to request TiKV or consume any network resources. So the factors
of such operations should be lower or 0.

SQL binding is used to bind statements with specific execution plans. Global SQL binding
affects all sessions and session SQL binding affects the current session. Since local
temporary tables are invisible to other sessions, global SQL binding is meaningless. TiDB
should report errors when users try to use global SQL binding on local temporary tables.
Creating global or session SQL binding on global temporary tables, and creating session
SQL binding on local temporary tables are both allowed.

Baseline is used to capture the plans of statements that appear more than once. The
appearance of statements is counted by SQL digests. Even if all sessions share the same
global temporary table definitions, the data and statistics is different from one session to
another. Thus baseline and SPM is useless for temporary tables. TiDB will ignore this
feature for temporary tables.

Prepared plan cache is used to cache plans for prepared statements to avoid duplicate
optimization. Each session has a cache and the scope of each cache is the current session.
Even if the cached plan stays in the cache after the temporary table is dropped, the plan
won’t take effect and will be removed by the LRU list finally. So we just leave it as it was.

Storage
Before going further to the executor, we need to determine the storage form of
temporary tables.

Basically, there are a few alternatives to store the data of in-memory temporary tables,
and the most promising ones are:

●​ Unistore. Unistore is a module that simulates TiKV on a standalone TiDB instance.
●​ UnionScan. UnionScan is a module that unites membuffer and TiKV data.

Membuffer buffers the dirty data a transaction writes. Query operators read
UnionScan and UnionScan will read both buffered data and persistent data. Thus, if
the persistent part is always empty, then the UnionScan itself is a temporary table.

 Unistore UnionScan

execution Y Y

indexes Y Y

spilling to disk Y N

MVCC Y N

TiDB uses UnionScan to store the data of temporary tables for the following reasons:

●​ The performance should be better. It can cut down the marshal/unmarshal cost
and a lot of the coprocessor code path, which is inevitable in the Unistore as a
standalone storage engine.

●​ The implementation is easier. As long as we don’t take the spilling to disk feature
into consideration for now, the global temporary table is almost handly. And we do
not bother by the tons of background goroutines of the Unistore engine when
dealing with resource releasing. How to keep the atomicity is another headache if
we choose the Unistore, imaging that a transaction would write to both temporary
tables and normal tables at the same time.

●​ A lower risk of introducing bugs. Although we implement the coprocessor in the
Unistore, we just use it for the testing purpose, and we also have some
experimental features first implemented in the Unistore, so its behavior may
slightly differ from the real TiKV, and that difference would introduce bugs.

Nothing needs to be changed for the KV encoding, the temporary table uses the same
strategy with the normal table.

When the memory consumed by a temporary table exceeds a threshold, the data should
be spilled to the local disk to avoid OOM. The threshold is defined by the system variable
`temptable_max_ram`, which is 1G by default. Membuffer does not support disk storage
for now, so we need to implement it.

A possible implementation is to use the AOF (append-only file) persistent storage, the
membuffer is implemented as a red-black tree and its node is allocated from a customized
allocator. That allocator manages the memory in an arena manner. A continuous block of
memory becomes an arena block and an arena consists of several arena blocks. We can
dump those blocks into the disk and maintain some LRU records for them. A precondition
of the AOF implementation is that once a block is dumped, it is never modified. Currently,
the value of a node is append-only, but the key is modified in-place, so some changes are
necessary. We can keep all the red-black tree nodes in memory, while keeping part of the
key-value data in the disk.

Another option is changing the red-black tree to a B+ tree, this option is more disk friendly
but the change takes more effort.

When a temporary table needs to be cleared, its disk data should also be cleared. That can
be done asynchronously by a background goroutine. The goroutine needs to know
whether a file is in use. So TiDB needs to maintain a map which contains in-use files, each
session updates the map periodically if it still needs the file. If some files are not touched
for a long time, we can treat the session as crashed and collect the disk files.

For on-disk temporary tables, it’s straightforward to store them on TiKV like normal tables.
Since each local temporary table has a unique table ID, the data from different sessions
are separate. However, multiple sessions using the same global temporary table will share
the same table ID, which means the data from multiple sessions is continuous and stored
together. Sessions will affect each other in this case.

Clearing the data of on-disk temporary tables is a little different from in-memory
temporary tables. When a TiDB instance is down, the storage space needs to be collected
by other TiDB instances. Thus the maintenance of in-use temporary tables should be on
the TiKV side.

Executor
For normal tables, auto-increment IDs and row IDs are allocated in batches from TiKV,
which significantly improves performance. However, as temporary tables are usually
inserted, it may cause write hotspots on TiKV. So the best way is to allocate IDs locally on
TiDB. The ID of a global temporary table is allocated separately among sessions and
rebases to 0 every time a transaction ends. That means, each session needs a copy of
allocators, rather than sharing the same allocators.

Besides, `last_insert_id` is also affected by inserting into temporary tables.

Since the data of in-memory temporary tables are not needed to be cached anymore,
coprocessor cache and point-get cache are ignored. But they still work for on-disk
temporary tables.

Follower read indicates TiDB to read the follower replicas to release the load of leaders.
For in-memory temporary tables, this hint is ignored. But it still works for on-disk
temporary tables.

Users can also choose the storage engine to read by setting
`tidb_isolation_read_engines`. For in-memory temporary tables, this setting will also be
ignored. But it still works for on-disk temporary tables.

Since in-memory temporary tables are not persistent on TiKV or TiFlash, writing binlog for
DML is also unnecessary. This also stays true for on-disk temporary tables, because data is
invisible to other sessions.

It’s straightforward to support MPP on on-disk temporary tables, because the data is also
synchronized to TiFlash. Most operators on in-memory temporary tables can still be
processed in TiDB, such as Aggregation and TopN. These operators will not cost much
memory because the sizes of in-memory temporary tables are relatively small.

However, joining normal tables with in-memory temporary tables might be a problem,
because the sizes of normal tables might be huge and thus merge sort join will cause

OOM, while hash join and index lookup join will be too slow. Supporting broadcast join and
shuffled hash join on in-memory temporary tables is very difficult. Fortunately, MPP
typically happens in OLAP applications, where writing and scanning duration is relatively
short compared to computing duration. So users can choose to define on-disk temporary
tables in this case.

Transaction
Because it’s rare to read historical data from a temporary table, temporary tables don’t
support features that rely on MVCC, like flashback tables, recover tables, stale reads, and
historical reads. Errors will be reported when users execute such statements on temporary
tables.

If a transaction only writes to temporary tables without normal tables, it does not really
need a TSO for committing, because MVCC is unsupported and the data is invisible to
other sessions. But for the sake of simplicity, we still fetch commitTS just like normal
tables.

When a transaction commits, the data in in-memory temporary tables should not be
committed on TiKV. When a transaction rollbacks, operations on normal tables and
temporary tables should be rolled back together. The data in on-disk temporary tables will
be committed. However, this can be omitted by global on-disk temporary tables, because
the data will be cleared anyway. TiDB can iterate KV ranges to filter out the data.

Since there won’t be concurrent modifications on the same temporary table, there won’t
be lock conflicts. So `FOR UPDATE` and `LOCK IN SHARE MODE` clauses will be ignored.

Transactions might retry write operations when commit fails. DML on normal tables might
rely on the data on temporary tables, so DML on temporary tables should also be retried.
For example:

●​ `INSERT INTO normal_table SELECT * FROM temp_table`
●​ `UPDATE normal_table, temp_table SET … WHERE normal_table.id=temp_table.id`

If DML on temporary tables is not retried, such statements won’t write any data.

Specially, as mentioned above, creating and dropping local temporary tables might also be
in a transaction, but they needn’t be retried.

TiDB comes with an optimization when the variable `tidb_constraint_check_in_place` is
disabled: checking for duplicate values in UNIQUE indexes is deferred until the transaction
commits. For those cases where temporary tables skip 2PC, this optimization should be
disabled.

Local transactions are special transactions that fetch TSO from the local PD. They can not
access the data that is bound to the current available zone. Although temporary tables are

not bound to any zones, they are invisible to other sessions, which means local
transactions can still guarantee linearizability even when they access temporary tables.

Schema change on a global temporary table may happen during a transaction which
writes to the temporary table. Unlike normal tables, the transaction won’t overwrite other
transactions, so it’s fine to commit. Schema change on a local temporary table will never
happen during a transaction which writes to the temporary table.

Privileges
Creating a local temporary table checks the `CREATE TEMPORARY TABLES` privilege. No
access rights are checked when dropping a local temporary table, according to [the MySQL
documentation](https://dev.mysql.com/doc/refman/8.0/en/drop-table.html).

All DDL on global temporary tables check the corresponding privileges like normal tables
do.

Writing to a global temporary table checks the privileges like the normal table. But there is
no privilege check for a local temporary table.

Privileges can not be granted to local temporary tables, because the tables are invisible to
other users. Granting privileges to global temporary tables is possible.

Ecosystem Tools
As mentioned above, DDL binlog of global temporary tables needs to be recorded, but not
for local temporary tables. DML binlog is always skipped for temporary tables. DDL of
global temporary tables should be supported by all data migration tools whose upstream
is TiDB, such as Dumpling, TiDB-binlog, and TiCDC.

Since `information_schema.tables` lists global temporary tables, these tables will be
processed by tools like Dumpling. Fortunately, querying global temporary tables in a new
session just returns empty results, so nothing needs to be handled.

When backup tools read TiKV data, the data of temporary tables should never be read.
However, on-disk temporary tables are stored on TiKV and TiFlash, so they need to be
ignored by those tools, such as BR and TiCDC. Since these tools can see the metadata,
they should also be capable of skipping tables that are not normal tables.

Telemetry is used to report the usage information of various features in TiDB. Global and
local temporary tables will be reported by telemetry separately, because the scenarios of
them are different.

https://dev.mysql.com/doc/refman/8.0/en/drop-table.html

Internal temporary tables
In MySQL, temporary tables will be used internally as infrastructures of other features,
such as CTE, derived tables, and UNION statements. These temporary tables are called
[internal temporary
tables](https://dev.mysql.com/doc/refman/8.0/en/internal-temporary-tables.html).

In the future, temporary tables will probably be used internally for some new features,
such as CTE. So TiDB should be capable of creating a local temporary table when it’s given
a list of columns. Internal temporary tables might be in-memory or on-disk, depending on
the optimizer. Physical plans that don’t apply MPP should use in-memory temporary tables,
otherwise they will use on-disk temporary tables.

Transactions that apply internal temporary tables might be read-only, but there are some
steps which write to TiKV:

-​ Assigning table ID for temporary tables
-​ Writing to on-disk temporary tables

Writing to on-disk temporary tables is inevitable, so the best way is NOT to report errors in
this case.

When executing a CTE in MPP mode, TiFlash has to write to the temporary table by
itself, because the middle data is generated by TiFlash.

Modification to the write path
The data of the temporary table is all in the membuffer of UnionScan. Writing to the
temporary table is writing to the transaction cache.

The data writing path in TiDB is typically through the `table.Table` interface, rows data are
converted into key-values, and then written to TiKV via 2PC. For normal transactions, the
data is cached in the membuffer until the transaction commits. The temporary table
should never be written to the real TiKV.

A transaction can write to both the temporary table and the normal table. Should the
temporary table share the membuffer with the normal table, or use a separate one?
It’s better to share the membuffer so the commit/rollback operation can be atomic. The
risk is that in case of a bug, the temporary table data may be written to the real table.

For global temporary tables, since the transaction commits automatically clears the
temporary table, we can filter out and discard the transaction cache data from the
temporary table when committing, and the implementation is relatively simple.

For local temporary tables, the temporary table data is cleared at the end of the session,
so the data should survive the transaction’s commit. We can copy the key-value data
belonging to the temporary table to another place and use it in the later read operation.

https://dev.mysql.com/doc/refman/8.0/en/internal-temporary-tables.html

Modification to the read path
In TiDB, reading is implemented by the coprocessor. Read operations should see their own
writes. TiDB uses a UnionScan operator on top of the coprocessor's executor. This operator
takes the data read by the coprocessor as a snapshot, then merges it with the membuffer,
and passes the result to its parent operator.

For transactional temporary tables, there is no need to do any additional changes, the
current code works well.

For the local temporary table, the key-value data of the temporary table in the current
transaction should be taken out. We keep a temporary table membuffer in the session
variable and if it is not null, the UnionScan operator needs to combine it with the original
data. So now the data hierarchy looks like this:

​ TiKV snapshot => Old membuffer => current transaction’s membuffer

Upgrade and Downgrade Compatibility
When users downgrade TiDB to an older version after they have created a global
temporary table, the table should not be seen by the older version. Otherwise, they might
write to the table and then upgrade TiDB, which will be a problem.

Test Design
A brief description of how the implementation will be tested. Both the integration test
and the unit test should be considered.

Functional Tests
It’s used to ensure the basic feature function works as expected. Both the integration test
and the unit test should be considered.

●​ DDL
○​ Create table / create table like
○​ Drop table
○​ Truncate table
○​ Other DDL (for global)

●​ DML
○​ Insert / replace / update / delete / load data
○​ All kinds of query operators
○​ Show create table / show tables

●​ Transaction

○​ Atomicity (for local)
○​ Isolation (RC / SI, linearizability)
○​ Data visibility between transactions
○​ Optimistic / Pessimistic transactions

●​ Information_schema
○​ Tables
○​ Columns

●​ Privileges
○​ DDL
○​ DML

Scenario Tests
It’s used to ensure this feature works as expected in some common scenarios.

Before we implement the spilling to disk feature, we have to know the memory usage for
some scenarios. For example, 100M for each temporary table, and 500-600 concurrent
connections, how much memory does TiDB use.

Compatibility Tests

Feature Compatibility Temporary table
type

Reason

placement rules Report error: not
support

 Meaningless

partition Report error: not
support

 Meaningless

show table regions / split table /
pre_split_regions

Report error: not
support

 Meaningless

stale read / historical read Report error: not
support

 Meaningless

auto_random /
shard_row_id_bits

Report error: not
support

 No need to release writing
hotspots

flashback / recover table Report error: not
support

 Meaningless

global SQL binding Report error: not
support

local Bindings are meaningless
after session ends & Tables
are different among sessions

view Report error: not
support

local Views are meaningless after
session ends & Tables are

different among sessions

copr cache Ignore this setting in-memory No need to cache

point get cache Ignore this setting in-memory No need to cache

follower read Ignore this setting in-memory Data is neither on TiKV nor on
TiFlash

read engine Ignore this setting in-memory Data is neither on TiKV nor on
TiFlash

GC Ignore this setting No need to GC data

select for update / lock in share
mode

Ignore this setting No lock is needed

baseline / SPM Ignore this setting Tables / stats are different
among sessions

tidb_constraint_check_in_place Ignore this setting in-memory &
local

Data is not committed on TiKV

auto analyze Ignore this setting Background sessions can’t
access private data

global txn / local txn Need to deal with No limitation for read / write

analyze Need to deal with Update in-memory stats in the
current session instead of in
system sessions

broadcast join / shuffle hash join Need to deal with on-disk Only support on-disk
temporary tables

telemetry Need to deal with Report the usage of
temporary tables

view Need to test global Drop views on dropping
temporary tables

auto_increment / last_insert_id Need to test

alter table Report error: not
support

local Too hard to support and
unnecessary

all hints Need to test

plan cache Need to test plan cache is session-scope

show fields / index / keys Need to test

SQL binding Need to test

clustered index Need to test

async commit / 1PC Need to test

checksum / check table Report error: not
support

collation / charset Need to test

batch insert Need to test

feedback Need to test

statements_summary /
slow_query

Need to test SQL normalization

big transaction Need to test

memory tracker Need to test

explain / explain analyze Need to test

Compatibility with other external components, like TiDB, PD, TiKV, TiFlash, BR, TiCDC,
Dumpling, TiUP, K8s, etc.
Upgrade compatibility
Downgrade compatibility

Benchmark Tests

The following two parts need to be measured:
measure the performance of this feature under different parameters
measure the performance influence on the online workload

sysbench for the temporary table, comparing its performance with the normal table. It
means comparing the performance of an in-memory system with a distributed system.

Investigation & Alternatives

How do other systems solve this issue? What other designs have been considered and
what is the rationale for not choosing them?

MySQL documentation for the temporary table
https://dev.mysql.com/doc/refman/8.0/en/internal-temporary-tables.html

CockroachDB just uses the normal table as the temporary table. All the temporary tables
are stored in a special schema, and it is scanned and cleaned periodically. If a session is
finished, the temporary tables of that session are also cleaned.

https://dev.mysql.com/doc/refman/8.0/en/internal-temporary-tables.html

https://github.com/cockroachdb/cockroach/issues/5807

Oracle uses global temporary tables in the old versions, and later on they also have the
private temporary tables. The private temporary table in Oracle looks like MySQL, those
tables are visible to the session rather than global. For global temporary tables, Oracle
does not need to handle the schema change, because `alter table` is not allowed when
some transactions are using the table.
https://docs.oracle.com/cd/B28359_01/server.111/b28310/tables003.htm#ADMIN11633

Development Plan
●​ Stage 1(Support global, in-memory temporary table)

○​ The architecture design for global/local, session/transaction,
in-memory/disk spilling (L)

○​ DDL（2XL)
○​ DML (2XL)
○​ Backup and recover the temporary table meta information (L)
○​ Sync the temporary table DDL through CDC or Binlog to the downstream
○​ Privilege (L)
○​ Compatibility with other features (2XL)
○​ Performance test (L)

●​ Stage 2 (Support local, in-memory temporary table)
○​ create/drop session temporary table (3XL)
○​ Compatibility with MySQL 8.0 temporary table (in-memory)
○​ Compatibility with other features (2XL)

●​ Stage 3
○​ Support spilling to disk for all kind of temporary tables (4XL)

Design Reviewers
Time Notes Recorder Decision

https://github.com/cockroachdb/cockroach/issues/5807
https://docs.oracle.com/cd/B28359_01/server.111/b28310/tables003.htm#ADMIN11633

	Temporary Table Design
	
	Introduction
	Syntax
	Visibility of table definition
	Visibility of data
	Storage engines

	Motivation or Background
	Detailed Design
	Metadata
	Optimizer
	Storage
	Executor
	Transaction
	Privileges
	Ecosystem Tools
	Internal temporary tables
	Modification to the write path
	Modification to the read path
	Upgrade and Downgrade Compatibility

	Test Design
	Functional Tests
	Scenario Tests
	Compatibility Tests
	Benchmark Tests

	Investigation & Alternatives
	Development Plan

	
	Design Reviewers
	

