Testing Policy Document
CAPSTONE 2025 - Demo 4

Project name: PortfolioPortal

Group name: Ctrl Freaks

ﬁF Portfolio Portal

Name and Surname

Student Number

Angelique Breedt u23542838
Eric Booyens u05127824
Nabegh Muhra u23661268
Keegan Walker u22693760
Christopher Yoko u22857941

Table of Contents

1 Introduction Page 2

2 Objectives of Testing Page 3

3 Scope of Testing Page 3

4 Testing Strategy Page 4

S Unit Testing Page 4-10
6 Integration Testing Page 11-15
7 Non-functional Requirement Testing | Page 16-22
8 End-To-End Testing Page 23

9 Testing Standards & Best Practices Page 22

10 Test Environment Page 24

11 Defect & Risk Management Page 24-25
12 Entry and Exit Criteria Page 25-26
13 Continuous Testing and CI/CD Page 26

1. Introduction

The purpose of this Testing Policy is to establish a standardised framework for testing
activities within Portfolio Portal. Testing ensures that the application meets functional
and non-functional requirements, maintains high quality, and provides users with a
reliable and engaging 3D portfolio experience.

As the Portfolio Portal transforms traditional CVs into immersive, interactive websites,
the system must perform accurately, consistently, and securely across various
environments and devices. This document defines the objectives, scope,
responsibilities, standards, tools, and methodologies for testing throughout the project

lifecycle.

2. Objectives of Testing

e To verify that the system meets all functional requirements (e.g., CV upload, text
extraction, 3D template generation).

To validate non-functional requirements, including performance, usability,
availability, and security.

e To detect and resolve defects early to minimise risk and development costs.
e To ensure consistent quality across all releases.

e To build stakeholder confidence in the reliability of Portfolio Portal.

3. Scope of Testing

The following components of the system are in Scope:

o CV upload functionality (file formats, OCR extraction).
o Template rendering in 3D environments.
o User interactions with generated portfolio sites.

o Compatibility across browsers (Chrome, Firefox, Edge, Safari) and
devices (desktop, mobile, tablet).

o APl integration (CV parsing, template selection).

o Security features (data privacy, file upload validation).

4. Testing Strategy
e Levels of Testing:

o Unit Testing: Validate individual functions (e.g., CV text extraction,
template loader).

o Integration Testing: Ensure modules (e.g., CV parsing — template
selection — rendering) work together.

o EZ2ETesting: Validate complete workflow from CV upload to portfolio
generation.

o User Acceptance Testing (UAT): Involve stakeholders to ensure business
goals are met.

e Types of Testing:
o Functional Testing: Confirm features behave as expected.
o Performance Testing: Stress/load testing of portfolio rendering.
o Usability Testing: Ensure intuitive navigation and accessibility.

o Regression Testing: Ensure updates don’t break existing functionality.

5. Unit Testing

Purpose:

Unit testing is aimed at verifying the correctness of individual components or modules of
a system in isolation, typically at the function or class level. The purpose of unit tests is
to ensure that each small piece of code behaves as expected, producing the correct
output for given inputs and handling edge cases properly. By testing these building
blocks independently, developers can quickly identify and fix bugs early in the
development cycle, before they propagate into larger system issues. Unit testing also
improves code maintainability and reliability, making it easier to refactor or extend the
system with confidence.

Tools used: Jest (https://jestjs.io/)
Run the tests running in the server directory.

Where tests can be found: server/tests/unit/tests

For the sectionizer.test.js:
(https://qithub.com/COS301-SE-2025/Portfolio-Portal/blob/main/server/tests/unit/__tests /sectionizer.test.js)

The functions that we did unit testing on for the sectionizer.test.js code are as follows:

extractPersonallnfo(lines, ocrName) — pulls name, email, phone, LinkedIn,
website, address, and a top-of-CV summary paragraph, while stripping contact
lines from the remaining text.

extractReferencesFirst(lines) — detects References / Referees blocks, returns
those lines, and removes them from the remaining body to prevent leakage into
other sections.

extractSectionByHeader(lines, key) — generic section slicer used by
Experience/Education (and others) to capture lines until the next header.
extractSimpleBlocks(lines) — builds simple section buckets (experience,
education, skills, etc.) from headers and content lines.

processCV(ocr) — end-to-end composition: given the OCR output (name,
remainingCV), produces normalised structured data: personal_info, experience,
education, skills, languages, projects, certifications, references.

Some of the high level logic that the tests cover are as follow:
Personal info:

o Labeled and unlabeled extraction (email/phone), LinkedIn normalisation,
website URL filtering (ignores GitHub for website; ignores tech tokens like
“node.js”), address proximity at top of document, fallback name logic
(OCR name vs labeled), and summary paragraph without/with explicit
header (excludes contact lines).

References:

o Detects “References’/“Referees”/“Reference”, collects until next header or
EOF, removes from remaining text so numbers/emails don’t leak into other
sections.

Sections:

o Experience/Education slicing by multiple header variants (“Work
Experience”, “Professional Experience”, “Academic Background”,
“Qualifications”, etc.) and EOF behavior.

Languages vs Skills:

o “English (Fluent)’/“Afrikaans (Native)” siphoned out of skills into

languages.

https://jestjs.io/
https://github.com/COS301-SE-2025/Portfolio-Portal/blob/main/server/tests/unit/__tests__/sectionizer.test.js
http://sectionizer.js

e De-duplication & noise removal:
o Deduplicates repeated skills; scrubs standalone name tokens (“AVA”,
‘REYNOLDS?”) from content blocks.
e End-to-end samples:
o Validates realistic CVs for Ava Reynolds, Brian Park, Daniel Brooks, Alex
Omari to ensure consistent structure and key content presence.

Run the sectionize.test.js code as follow:

npx jest tests/unit/__tests__ /sectionizer.test.js

Get the coverage by running:
npx jest --coverage --collectCoverageFrom "app/utils/sectionizer.js"

The above must be run in the server directory (cd server).
Below are screenshots of the sectionizer.test.js after running it:

sectionizer.test.js

extractPersonalInfo

extractReferencesFirst

extractExperience

extractEducation

phones vs IDs

email restoration and URL filtering

processCV end-to-end sample

processCV end-to-end sample (Brian Park)

processCV end-to-end sample (Daniel Brooks)

processCV end-to-end sample (Alex Omari)

Test Suites: 1 passed, 1 total
Tests: 36 passed, 36 total

Below

e Consol

Foun

is a screenshot of the coverage:

social.test.js
sectionizer.test.js
social.test.js (18.317 s)

e

d 3 existing users for testing

85.66 | 68.71 | 95.23 |
85.66 | 68.71 | 95.23 |

Test Suites: 3 passed, 3 total

Tests:
Snapshots:
Time:

75 passed, 75 total
@ total
18.585 s, estimated 19 s

For the social.test.js: The functions that we did unit testing on for the social.test.js

code a

(https://g

re as follows:

ithub.com/COS301-SE-2025/Portfolio-Portal/blob/main/server/tests/unit/ __tests /social.test.js)

Route validation logic — validates required fields (userld, targetUserld, action)
for follow/like operations, ensures users cannot follow/like themselves, and
confirms valid action types.

GET /users endpoint logic — fetches users with CV data by querying the cv_data
table first, then retrieving corresponding user profiles, handles empty/null data
gracefully.

GET /interactions/:userld endpoint logic — retrieves user interactions
(followsl/likes) from the database, returns an empty array when no interactions
are found.

POST /follow endpoint logic — processes follow/unfollow actions, prevents
duplicate follows, updates follower counts, and handles database constraint
violations.

POST /like endpoint logic — processes like/unlike actions, prevents duplicate
likes, updates like counts, and handles database constraint violations.
Supabase integration mocking — mocks database client with query chaining
(select, insert, update, delete), handles SQL function calls, simulates database
responses and errors.

https://github.com/COS301-SE-2025/Portfolio-Portal/blob/main/server/tests/unit/__tests__/social.test.js

Some of the high-level logic that the tests cover are as follows:
Route validation:

e Required field validation (userld, targetUserld, action present), self-interaction
prevention (users cannot follow/like themselves), action type validation
(follow/unfollow, like/unlike only), missing field detection and error handling.

Database operations:

e (CV data querying with null/lempty handling, user profile retrieval with filtering,
interaction logging with duplicate prevention, follower/like count updates with
atomic operations.

Error handling:

e Database connection errors, unique constraint violations (duplicate follows/likes),
missing data scenarios, invalid input validation, empty result set handling.

Supabase mocking:

e Query chain mocking (from().select().eq().in().order()), insert/update/delete
operation mocking, SQL function call simulation, error response simulation with
specific error codes.

Social features:

e Follow/unfollow workflow validation, like/unlike workflow validation, interaction
history tracking, user discovery through CV data filtering.

Data integrity:

e Prevents self-follows and self-likes, handles duplicate interaction attempts
gracefully, maintains accurate follower and like counts, ensures clean data
relationships.

Run the social.test.js code as follow: npx jest
tests/unit/__tests__/social.test.js

Get the coverage by running: npx jest --coverage --collectCoverageFrom
"app/routes/social.routes.js"

The above must be run in the server directory (cd server).
Where tests can be found: server/tests/unit/__tests__/social.test.js

Below are screenshots of the social.test.js after running it:

PC:

social.test.js

Snapshots:
Time:

10

6. Integration Testing

Purpose:

Integration testing focuses on verifying that different modules, components, or services
of a system work together correctly when combined. Its purpose is to detect issues that
may arise from interactions between units, such as mismatched data formats, incorrect
API calls, or communication failures between subsystems. Unlike unit testing, which
isolates individual pieces of code, integration testing ensures that the flow of data and
control across multiple parts of the application is seamless and reliable. This type of
testing helps confirm that the system’s components integrate as intended, reducing the
risk of errors when the full application is executed in real-world scenarios.

Tools used:

- Postman
Used Postman to manually test the correctness and integration of the backend services
and the OCR scanner logic.

Where tests can be found:
- Postman
The Postman tests can be run to test the correctness of the OCR scanner and the text
extraction. To do this one will have to follow these steps:
Step 1 — Log in and get a token
1. Open Postman.
2. Set the method to POST.

Enter the request URL.:
http://localhost:5050/api/users/login
3.
4. Go to the Body tab.
5. Select raw.
6. Choose JSON.

Paste valid credentials, e.qg:
{
"email": "valid_email",
"password": "password"
¥
7.
8. Click send.
9. Copy the token (excluding quotations)

11

Step 2 — Upload a CV

1. Open Postman.
2. Set the method to POST.

Enter the request URL.:
http://localhost:5050/api/ocr/upload
3.
4. Go to the Header tab.

5. Add a key Authorisation, wiht the value:

Bearer <paste-your-token-here>

6. Go to the Body tab.
7. Select form-data.
8. Add a new field,

key: cv
Type: file
Value: your file that you want to upload

9. Click send

12

An example of the response after a CV is uploaded will look as follows:
http h # POST http://localhost:5050/: &

Hie http://localhost:5050/api/ocr/upload

http://localhost:5050/api/ocr/upload

Autho Body

none (& form-data x-www-form-urlencoded i GraphQL

Value Description == Bulk Edit

/A Ava Reynolds CV (demo3 - so...

Body

{} JSON ~

1 1
"success":
"data": {
"personal_info":

for
With

"email":
"phone":
“add
"linkedin

"website": ""

13

For the social.Integration.test.js: The functions that we did integration testing on for the
sociallntegration.test.js code are as follows:

(https:/qithub.com/COS301-SE-2025/Portfolio-Portal/blob/main/server/tests/integration/__tests_/social.test.js)

e Database user queries — fetches users with CV data from actual Supabase database,
retrieves public/private user profiles with proper filtering, handles empty result sets
gracefully.

e User interaction operations — creates, reads, and deletes follow/like interactions in
database, maintains referential integrity with foreign key constraints, handles duplicate
interaction prevention.

e Follow workflow integration — inserts follow interactions into user_interactions table,
increments/decrements follower counts atomically, removes follow relationships and
updates counts consistently.

e Like workflow integration — creates like interactions with proper user relationships,
updates likes_received counters accurately, handles unlike operations with count
adjustments.

e Concurrent operation handling — processes multiple simultaneous follow/like operations,
maintains data consistency during concurrent updates, prevents race conditions in
counter updates.

e Database constraint validation — enforces foreign key constraints on user relationships,
validates unique constraints for duplicate interactions, handles constraint violations
gracefully.

Some of the high level logic that the tests cover are as follow:
Database connectivity:

e Real Supabase connection using environment variables, actual table queries with proper
error handling, data retrieval with filtering and pagination, foreign key relationship
validation across tables.

User data management:

e CV data querying with null/undefined handling, public profile filtering with privacy
controls, user profile retrieval with complete field sets, empty result handling for users
without data.

Social interaction workflows:

e Follow creation with database persistence, follower count incrementation with atomic
updates, interaction removal with count decrementation, duplicate follow prevention with
unique constraints.

14

https://github.com/COS301-SE-2025/Portfolio-Portal/blob/main/server/tests/integration/__tests__/social.test.js

Like system integration:

e Like interaction logging with proper relationships, likes_received counter management,
unlike functionality with count restoration, duplicate like constraint enforcement.

Data consistency:

e Concurrent user operations without conflicts, counter increment/decrement accuracy,
foreign key constraint enforcement, and transaction-like behavior for related operations.

Edge case handling:

e Zero follower count boundary conditions, non-existent user foreign key violations,
duplicate interaction constraint violations, concurrent operation conflict resolution.

End-to-end flow validation:

e Complete social workflow from follow to like to unfollow, multi-step interaction verification
with database state, counter accuracy throughout operation lifecycle, cleanup and
restoration of original state.

Error handling:

e Database connection failures, constraint violation responses (23505, 23503), missing
data scenarios, and invalid foreign key references.

Run the sociallntegration.test.js code as follow: npx jest
tests/integration/__tests__/socialIntegration.test.js

Get the coverage by running: npx jest --coverage --collectCoverageFrom
"app/routes/social.routes.js"

The above must be run in the server directory (cd server).
Where tests can be found: server/tests/integration/tests/sociallntegration.test.js

An example of the response:

Found 3 existing u:

social.test.js (20.581 5)

th CV Data

Database Integration - User Imteractions

Database Integration

Database Integration - Li

End-to-End Database Flow 1 5

Data Consistency and Edge Cases

Test Suites: 1
Tests: 16

7. Non-Functional Testing

Purpose:

Non-functional testing focuses on evaluating aspects of a system that define how well it
performs rather than what it does. The purpose of non-functional tests is to ensure that
the application meets quality attributes such as performance, scalability, reliability,
usability, security, and maintainability. For example, these tests can measure how
quickly the system responds under heavy load, how secure it is against unauthorised
access, or how user-friendly the interface feels. Unlike functional testing, which checks
if features work correctly, non-functional testing validates whether the system can
handle real-world demands and provide a smooth, efficient, and dependable user
experience.

Types of non-functional tests:
- Usability

Performance

Availability

Scalability

Maintainability

Tools used:
- Google Forms for Usability
- Cypress (https://www.cypress.io/) for Performance of OCR CV Scanner (CV
processing/portfolio generation time)

Where tests can be found:

- Google form link for Usability test:
https://docs.google.com/forms/d/e/1FAIpQL Sf7iF TOtMTGfQd17pkCix21ouwule5npW4eH8Yz-1FazwiV3Alvi
ewform?usp=preview

- The Cypress performance testing can be found at the directory:
frontend/cypress/integrationTests/perf_ocr.cy.js

Performance Test:
(https://github.com/COS301-SE-2025/Portfolio-Portal/tree/main/frontend/cypress/integration Tests)

The test firstly logs in via the POST API login endpoint. It then sets the CV data, which
are 4 CV PDFs for the purpose of this testing, each with varying formats.The testing
then processes these CVs via the OCR scanner and it records the time it takes for the
OCR scanner to process each CV. It then iterates over this 3 times. It then takes the
minimum time it took for processing, the maximum time, and the average time over
these three runs. The goal is to have these processing times to all be lower than 5

16

https://www.cypress.io/
https://docs.google.com/forms/d/e/1FAIpQLSf7iFTOtMTGfQd17pkCjx21ouwu1e5npW4eH8Yz-1FazwjV3A/viewform?usp=preview
https://docs.google.com/forms/d/e/1FAIpQLSf7iFTOtMTGfQd17pkCjx21ouwu1e5npW4eH8Yz-1FazwjV3A/viewform?usp=preview
https://github.com/COS301-SE-2025/Portfolio-Portal/tree/main/frontend/cypress/integrationTests

seconds. (5000 ms). Below is a screenshot after running the performance testing with

Cypress.
™ frontend (=13

File Edit View Window Help Developer Tools

e [0 Elements Console Sources Network »» @ 1 X

12B0x800 14%
© | @ & B @ tpv & Y Filter Default levels ¥ | NoIssues

perf_ocr perf ocr.cy.js:73
(index) file min max avg
task ocrUpload, Object{4}] Alex Omari 2186 2352 2233

1d.. 2077 2190 2130
2038 2234 2120
3 Daniel Broo.. 2280 2417 2331

HTTP statu pected 200 to equal
200

under SLA cted 2417 to be below .
Array(4)

15000

res ected true to be
true

log run 2
task ocrUy

HTTP st s: expected 200 to equal
200

ed 2280 to be
15000

ed true to be
true

avg under S
log
log D:

log

wrap ni

1 2 3 a4 5
6
5 (100%)
4
2
0(0%) 0(0%) 0 (0%) 0(0%)
0
1 2 3 4 5
Would you say Portfolio Portal is user-friendly? |_|:| Copy chart
5 responses
@ Yes
@ Vostly
Not really
@ Definitely not

17

https://docs.google.com/forms/d/e/1FAIpQLSf7iFTOtMTGfQd17pkCjx21ouwu1e5npW4eH8Yz-1FazwjV3A/viewform?usp=preview

Questions ~ Responses (@ Settings

Were you ever confused / lost while using the system? |_|:I Copy chart

@ ro never
@ yes | was a bit confused at times
© | was complete confused

Were you able to successfully signup and login to your account? |_|:I Copy chart

@ yes easily
@ yes but with some difficulty
®no

Questions Responses (@ Settings

5 responses

5 responses

Were you able to successfully upload your CV and generate a portfolio website? 10 Copy chart

@ yes easily
@ yes but with some difficulty
®no

Were you able to successfully download your Portfolio Website? I_D Copy chart

@ Yes
® No

5 responses

5 responses

18

a Portfolio Portal Usability Test (UAT) (&% Y

@ © o ¢

Questions Responses e Settings

5 responses

Summary Question

Please enter your name or a unique identifier.

5responses

Ron

Matthew Van Onselen
Marco van Antwerp
Ruby Booyens

Chalandre

Please rate your first experience using Portfolio Portal out of 5

5 responses

Average rating (5.00)

1 2 3

NaribApFv7YqQ/edit#_d

Link to Sheets :

Individual

||_:| Copy chart

(<o)

o

Published

Questions Responses (@ Settings

If you encountered any other issues please describe them.

2 responses

N/A

None

What was your first impression of the design and layout of your generated portfolio?

5responses

Beautiful app, wonderful concept

Really well done and a really creative way of displaying all the necessary information

Great Ul design, super user friendly and easy to navigate
| found it visually appealing and easy to navigate

Decent

19

Questions Responses e Settings

Would you say the system is ready to be launched? LD Copy chart

5 responses

®ves
@ Almost
® No

If you answered ‘Almost' or 'No" to the previous question, please explain why.

1 response

N/A

Questions Responses e Settings

System Usability Scale (SUS) - Core Usability Metrics

| think that I would like to use this system again. IO copy chart

5 responses

3 3 (60%)
2 2 (40%)
1
0 (0%) 0 (0%) 0 (0%)
0 | | |
1 2 3

20

Questions Responses e Settings

I found the system unnecessarily complex. LD Copy chart

5 responses

3 3 (60%)
2
1 1 (20%)
0 (0%) 0 (0%)

0 | |

3 5

Questions Responses e Settings
| would imagine that most people would learn to use this system very quickly. I_D Copy chart

5 responses

6
4
2
0 (t‘]%) 0 (?%) 0 ((?%] 0 {(?%)
0
1 2 3 4
| felt very confident using the system. LD Copy chart

5 responses

4 (80%)

0 (t‘]%) 0(0%) 0 ((?%)

Questions Responses e Settings

If you tested out the fun, interactive versions of any of the 5 templates, would LD Copy chart
you say that the navigation was intuitive?

4 responses

2 (50%)
1
0 (0%) 0 (0%) 0 (0%)
0 | | |
1 2 3
Please give your overall rating of the platform LD Copy chart
5 responses
Average rating (4.80)
1 2 3 4)

An overall rating of 4.8 stars was calculated from the Usability test.

22

8. End-To-End Testing

Purpose:

End-To-End (e2e) Testing is performed to validate the complete flow of an application
from start to finish, ensuring that all components of the system work together as
expected. The purpose of E2E testing is to simulate real-world user scenarios, covering
interactions across the frontend, backend, database, APIs, and external services. By
testing the system as a whole, it helps identify integration issues, broken workflows, or
unexpected behavior that might not surface in unit or integration tests. Ultimately, E2E
testing provides confidence that the application delivers a seamless and reliable
experience to users in a production-like environment.

Tools used:
The E2E testing was done using the Cypress automated testing tool.

Where tests can be found:
In the frontend of the system directory under “Cypress”
Portfolio-Portal/frontend/Cypress/

9. Testing Standards & Best Practices
e Follow IEEE 829 (Software Test Documentation Standard).
e Apply Test-Driven Development (TDD) where feasible.
e Automate repetitive tests (using Jest, Cypress, Selenium).

e Maintain traceability between requirements, test cases, and defects.

23

10. Test Environment
e Hardware: Standard desktop & mobile configurations.
e Software:
o Browsers (latest stable versions).
o Backend: Node.js.
o Database: Supabase
o Cloud hosting: Railway
e Tools:

o Unit testing: Jest (https://jestjs.io/)

o End-to-end: Cypress (https://www.cypress.io/)

11. Defect & Risk Management

Defect Management:

e All defects to be logged in GitHub Issues.
e Each defect will include:
o Unique ID, severity, priority.

o Steps to reproduce, screenshots/logs.

o Assigned developer, status (open, in-progress, fixed, verified).

e Prioritisation:

24

https://jestjs.io/
https://www.cypress.io/

o Critical: Blocking issues (e.g., file upload crash).

o High: Major feature broken (e.g., 3D template not rendering).

o Medium: Usability or minor logic errors.

o Low: Cosmetic/Ul issues.

Risk Management:

Risks:
o OCR inaccuracies leading to wrong data extraction.
o Browser incompatibility issues.
o High rendering load causing performance bottlenecks.
e Mitigation:

Run compatibility tests early.

o Use fallback solutions for OCR errors.

Optimise 3D rendering pipeline.

12. Entry and EXxit Criteria

Entry Criteria:

o Requirements are finalised.
o Development environment stable.
o Test cases prepared.

25

Exit Criteria:

o All critical and high defects resolved
o Test coverage = 80%.
o UAT approval obtained.

13. Continuous Testing & CI/CD

e Integrate automated tests into CI/CD pipeline (GitHub Actions).

e Ensure regression tests run on every build.

e Block deployments on failed critical test cases.

26

	The purpose of this Testing Policy is to establish a standardised framework for testing activities within Portfolio Portal. Testing ensures that the application meets functional and non-functional requirements, maintains high quality, and provides users with a reliable and engaging 3D portfolio experience.
	As the Portfolio Portal transforms traditional CVs into immersive, interactive websites, the system must perform accurately, consistently, and securely across various environments and devices. This document defines the objectives, scope, responsibilities, standards, tools, and methodologies for testing throughout the project lifecycle.
	2. Objectives of Testing
	●​To verify that the system meets all functional requirements (e.g., CV upload, text extraction, 3D template generation).
	●​​To validate non-functional requirements, including performance, usability, availability, and security.​
	●​To detect and resolve defects early to minimise risk and development costs.​
	●​To ensure consistent quality across all releases.​
	●​To build stakeholder confidence in the reliability of Portfolio Portal.​
	

	3. Scope of Testing
	The following components of the system are in Scope:​
	○​CV upload functionality (file formats, OCR extraction).​
	○​Template rendering in 3D environments.​
	○​User interactions with generated portfolio sites.​
	○​Compatibility across browsers (Chrome, Firefox, Edge, Safari) and devices (desktop, mobile, tablet).​
	○​API integration (CV parsing, template selection).​
	○​Security features (data privacy, file upload validation).​​
	

	4. Testing Strategy
	●​Levels of Testing:​
	○​Unit Testing: Validate individual functions (e.g., CV text extraction, template loader).​
	○​Integration Testing: Ensure modules (e.g., CV parsing → template selection → rendering) work together.​
	○​E2ETesting: Validate complete workflow from CV upload to portfolio generation.​
	○​User Acceptance Testing (UAT): Involve stakeholders to ensure business goals are met.​
	●​Types of Testing:​
	○​Functional Testing: Confirm features behave as expected.​
	○​Performance Testing: Stress/load testing of portfolio rendering.​
	○​Usability Testing: Ensure intuitive navigation and accessibility.​
	○​Regression Testing: Ensure updates don’t break existing functionality.​
	

	5. Unit Testing
	
	7. Non-Functional Testing
	8. End-To-End Testing
	9. Testing Standards & Best Practices
	●​Follow IEEE 829 (Software Test Documentation Standard).​
	●​Apply Test-Driven Development (TDD) where feasible.​
	●​Automate repetitive tests (using Jest, Cypress, Selenium).​
	●​Maintain traceability between requirements, test cases, and defects.
	

	10. Test Environment
	●​Hardware: Standard desktop & mobile configurations.​
	●​Software:​
	○​Browsers (latest stable versions).​
	○​Backend: Node.js.​
	○​Database: Supabase​
	○​Cloud hosting: Railway​
	●​Tools:​
	○​Unit testing: Jest (https://jestjs.io/)​
	○​End-to-end: Cypress (https://www.cypress.io/)​​​

	11. Defect & Risk Management
	●​All defects to be logged in GitHub Issues.​
	●​Each defect will include:​
	○​Unique ID, severity, priority.​
	○​Steps to reproduce, screenshots/logs.​
	○​Assigned developer, status (open, in-progress, fixed, verified).
	●​Prioritisation:​
	○​Critical: Blocking issues (e.g., file upload crash).​
	○​High: Major feature broken (e.g., 3D template not rendering).​
	○​Medium: Usability or minor logic errors.​
	○​Low: Cosmetic/UI issues.
	
	Risk Management:​Risks:
	○​OCR inaccuracies leading to wrong data extraction.​
	○​Browser incompatibility issues.​
	○​High rendering load causing performance bottlenecks.​
	●​Mitigation:​Run compatibility tests early.​
	○​Use fallback solutions for OCR errors.​
	Optimise 3D rendering pipeline.​

	12. Entry and Exit Criteria
	Entry Criteria:
	○​Requirements are finalised.
	○​Development environment stable.
	○​Test cases prepared.​
	Exit Criteria:
	○​All critical and high defects resolved
	○​Test coverage ≥ 80%.
	○​UAT approval obtained.​
	

	13. Continuous Testing & CI/CD
	●​Integrate automated tests into CI/CD pipeline (GitHub Actions).​
	●​Ensure regression tests run on every build.​
	●​Block deployments on failed critical test cases.

