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Preamble 
Hello dear reader! 
 
This is a draft of my book available for a free reading. This version of the book is incomplete, 
unedited, not properly styled. It won’t be updated. Consider buying the book, and you’ll get a 
complete text revised by a professional editor. You’ll also get some additional materials such 
as educational videos. 
 
https://leanpub.com/functional-design-and-architecture 
 
Here is the example of how deeply the text was edited: 
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4​ 
Domain model design 

This chapter covers: 
▪​ How to analyze a domain mnemonically and find its general properties 
▪​ How to model the domain in different embedded DSLs 
▪​ Combinatorial languages and domain modeling 
▪​ External language parsing and translation 

When Sir Isaac Newton invented his theory of gravitation, he probably never imagined the 
basis of that theory would be significantly reworked in the future, involving an entirely 
different set of mathematical abstractions. The theory, while being inapplicable to very 
massive or very fast objects, still works fine for a narrower scale of conditions. The Newton’s 
apple will fall down accurately following the law of universal gravitation if it has a low speed 
or falls to the relatively low mass object. What abstraction we should choose for our 
calculations — Newton's classical mechanics or Einstein's more modern theory of relativity — 
depends on the problem we want to solve. It's important to consider whether we are landing 
our ship on the Moon or traveling near the black hole in the center of our galaxy, because the 
conditions are very different, and we must be sure our formulas are appropriate to give us an 
adequate result. After all, our lives depend on the right decision of what abstraction to 
choose so we must not be wrong. 

Software developers do make wrong decisions, and it happens more often than it actually 
should. Fortunately, software development is not typically so fatalistic. People’s lives don't 
usually depend on the code written — usually, but not always. That’s definitely not true if we 
talk about sensitive domains like SCADA (Supervisory Control and Data Acquisition) and 
nuclear bomb calculations. Every developer must be responsible and professional to decrease 
the risks of critical software errors, but the probability of such will never become zero (unless 
we shift to formal methods to prove the correctness of the program, which is really hard). So 
why then do we ignore the approaches that are intended to help developers write valid, less 
buggy code? Why do we commit to technologies that often don't prove to be good for solving 
our regular tasks? The history of development has many black pages where using the wrong 
abstractions ruined great projects. Did you know there was a satellite called the Mars Climate 
Orbiter that burned up in that planet’s atmosphere because of a software bug? The problem 
was a measurement unit mismatch, where the program returned a pound-seconds 
measurement but it should have been newton-seconds. This bug could have been eliminated 

 



Alexander Granin / Functional Design and Architecture  / Draft 0.9.0​ 3 

by testing or by static type-level logic. It seems the developers had missed something 
important when they were programming this behavior. 

Abstractions can save us from bugs in two ways. 
●​ By making it simple to reason about the domain; in other words, decreasing 

accidental complexity (which is good), so that we can easily see the bugs. 
●​ By making it impossible to push the program into an invalid state; in other words, 

encoding a domain so that only correct operations are allowed. 
We call a domain the knowledge of how a certain object or process works in the real world. 
Domain model is a representation of a domain. Domain model includes more or less formal 
definition of data and transformations of that domain. We usually deal with domain models 
expressed by code, but also it can be a set of diagrams or a specific domain language. In this 
chapter we'll study how to design a domain model, what are the tools do we have to make it 
correct and simple. While it's certainly fine to want correctness in software but it's not so 
obvious why unnecessary complex abstractions may lead you to bugs. The main reason here 
is that we lose the focus of the domain we are implementing and start treating the 
abstraction as an universal hammer that we think may solve all our problems at once. You 
probably know the result when the project suddenly falls into abstraction hell and no one 
piece of domain becomes visible through it. How can you be sure all of the requirements are 
handled? In this situation it's more likely you'll find many bugs you could avoid by having a 
fine-readable and simple but still adequate abstraction. The abstractions shouldn't be too 
abstract, otherwise they tend to leak and obfuscate your code. We'll discuss domain 
modeling as the main approach to follow and see what abstractions we have for this. We'll 
also continue developing the ideas we touched on in the previous chapters. 

Roll up your sleeves; the hard work on the Logic Control subsystem is ahead. So far, the 
Logic Control eDSL we wrote as a demonstration of domain-driven modeling seems to be 
naive and incomplete as it doesn't cover all of the corresponding domains. The scope of work 
in this chapter includes: 

1.​ Define the domain of Logic Control. 
2.​ Describe the Logic Control subsystem's functional requirements and responsibilities. 
3.​ Implement the domain model for Logic Control in the form of embedded DSLs. 
4.​ Elaborate the combinatorial interface to the Logic Control subsystem. 
5.​ Create an external representation of the Logic Control DSL. 
6.​ Test the subsystem. 

The first goal of this chapter is to create the code that implements most of the functional 
requirements of Logic Control. The second goal is to learn domain model design and new 
functional concepts that are applicable at this scale of software development. Keep in mind 
that we are descending from the architecture to the design of subsystems and layers in a 
top–bottom development process. We discussed the approaches to modularizing the 
application in chapter 2, and we even tried out some ideas of domain modeling on the Logic 
Control and Hardware subsystems, but not all questions were clarified. Let's clarify it, then. 

4.1​ Defining the domain model and requirements 
What is a domain? What is a domain model? We all have an intuitive understanding of these 
terms just because every time we code we implement a tool for solving problems in some 
domain. By doing this, we want to ease tasks, and maybe introduce automation into them. 
Our tool should simplify solving of hard tasks and make it possible to solve tasks one cannot 
solve without computers at all. As we plunged into the SCADA field, a good example of this 
will be manufacturing automation – a SCADA domain in which a quality and an amount of 
production play the leading role. But this is what our developer's activity looks like from the 
outside, to the customer. In contrast, when we discuss a domain, we are interested in the 
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details of its internal structure and behavior, what notions we should take into consideration 
and what things we can ignore. Then we start thinking about the domain model; namely, 
what data structures, values, and interactions could represent these notions and behaviors in 
order to reflect them properly. This is what we have to learn to do every day. In fact, we 
already got familiar with domain modeling – a process we participate in to design domain 
models. We just need more tools to do that right. 

As usual, we'll start from requirements, building on what we described for Logic Control 
earlier. This step is very important to better understand what we should do, and how. 
Remember how we converted requirements into a domain-specific language for hardware 
definition in chapter 3? We can't be successful in functional domain modeling if we haven't 
sorted out the real nature of the domain and its notions. 

The Logic Control subsystem encapsulates code that covers a relatively big part of the 
spaceship domain. The subsystem provides a set of tools (functional services, eDSLs) for the 
following functionality (partially described in the mind map in figure 2.7): 

1.​ Reading actual data from sensors. 
2.​ Accessing archive data and parameters of the hardware under control. 
3.​ Handling events from other subsystems and from hardware. 
4.​ Running control scripts and programs. Scripts can be run by different conditions: 

▪​ By Boolean condition 
▪​ By exact time or by hitting a time interval 
▪​ By event 
▪​ By demand from other subsystems 
▪​ Periodically with a time interval 

5.​ Accessing the hardware schema of a spaceship. 
6.​ Monitoring of spaceship state and properties. 
7.​ Autonomously correcting spaceship parameters according to predefined behavioral 

programs. 
8.​ Sending commands to control units. 
9.​ Evaluating mathematical calculations. 
10.​Handling hardware errors and failures. 
11.​Testing scenarios before pushing them into a real environment. 
12.​Abstracting different hardware protocols and devices. 
13.​Logging and managing security logs. 

Characterizing this list of requirements as a comprehensive domain description would be a 
mistake, but it's what we have for now. You probably noticed that we discover requirements 
in increments while descending from the big scale of application design to the details of 
particular subsystems and even modules. This gives us a scope of the functionality  that we 
know we can implement immediately. In real development you'll probably want to focus on 
one concrete subsystem until you get it working properly. But it's always probable you'll end 
up with a malformed and inconsistent design the rest of the subsystems don't match with, 
and then you'll be forced to redesign it when the problems come out. 

4.2​ Simple embedded DSLs 
It would be perfect to unify all this domain stuff with a limited yet powerful domain-specific 
language. You may ask, why a DSL? Why not just implement it “as is” using functional style? 
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In talking about design decisions like this one, we should take into consideration the factors 
discussed in chapter 1. Will it help to achieve goals? Can a DSL give the desired level of 
simplicity? Does the solution cover all the requirements? Do we have human resources and 
money to support this solution in the later stages of the software lifecycle? 

The DSL approach addresses one main problem: the smooth translation of the domain’s 
essence into the code without increasing accidental complexity. Done right, a DSL can 
replace tons of messy code, but of course, there is a risk that it will restrict and annoy the 
user too much if it's designed badly. Unfortunately, there are no guarantees that introducing 
a DSL will be a good decision. Fortunately, we don't have any choice: the SCADA software 
should be operated by a scripting language. We just follow the requirements. 

In this section we'll take several approaches and see if they are good to model embedded 
languages. The first one is rather primitive and straightforward: “a pyramid” of plain 
functions. It's fine, if you may fit all the domains in one page. Otherwise, you'd better try 
algebraic data types. In this case, your algebraic structures encode every notion of a domain, 
from objects to processes and users. Depending on your taste, you may design it more or 
less granular. It's fine if you just keep data in these structures, but you still need “a pyramid” 
of plain functions to do related stuff. Otherwise, you'll better try a combinatorial approach 
that is described in the next section. 

4.2.1​ Domain model eDSL using functions and primitive types 
In functional programming, everything that has some predefined behavior can be 
implemented by a composition of pure and impure functions that operate on the primitive 
types. Following is the example produces a Morse encoded FizzBuzzes – a simple problem we 
all know very well: 
 

import Data.Char (toLower) 
 
fizzBuzz :: Int -> String 
fizzBuzz x | (x `mod` 15) == 0 = "FizzBuzz" 
           | (x `mod` 5)  == 0 = "Buzz" 
           | (x `mod` 3)  == 0 = "Fizz" 
           | otherwise = show x 
 
morseCode :: [(Char, String)] 
morseCode = 
  [ ('b', "-..."), ('f', "..-."), ('i', ".."), ('u', "..-") 
  , ('z', "--.."), ('0', "-----"), ('1', ".----"), ('2', "..---") 
  , ('3', "...--"), ('4', "....-"), ('5', "....."), ('6', "-....") 
  , ('7', "--..."), ('8', "---.."), ('9', "----.") ] 
 
toMorse :: Char -> String 
toMorse char = case lookup char morseCode of 
    Just code -> code 
    Nothing -> "???" 
 
morseBelt :: Int -> [String] 
morseBelt = map (' ' :) . map toMorse . map toLower . fizzBuzz 
 
morseFizzBuzzes :: String 
morseFizzBuzzes = (concat . concatMap morseBelt) [1..100] 
 
main = putStrLn morseFizzBuzzes 
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You see here a long functional conveyor of transformations over primitive data types – the 
morseBelt function that takes an integer and returns a list of strings. Four separate 
functions are composed together by composition operator (.): each of them does a small 
piece of work and passes the result to the next workshop, from right to left. The 
transformation process starts from a fizzBuzz function that converts a number to FizzBuzz 
string. Then the function map toLower takes the baton and lowercases every letter by 
mapping over the string. Going further, the lowercased string becomes a list of Morse 
encoded strings, and the last function (' ' :) pads it by spaces. We strongly feel 
composition of functions like this one as functional code. 

DEFINITION A functional eDSL is an embedded domain-specific language that uses 
functional idioms and patterns for expressing domain notions and behavior. A functional 
eDSL should contain a concise set of precise combinators that do one small thing and are 
able to be composed in a functional manner. 

On the basic level of “functional programming Jediism” you don't even need to know any 
advanced concepts coming from mathematical theories, because these concepts serve the 
purpose of unifying code patterns, to abstract behavior and to make the code much more 
safe, expressive, and powerful. But the possibility of just writing functions over functions is 
still there. By going down this path, you'll probably end up with verbose code that will look 
like a functional pyramid (see figure 1.10 in chapter 1). It will work fine, though. Moreover, 
the code can be made less clumsy if you group functions together by the criterion that they 
relate to the same part of the domain, regardless of whether this domain is really the domain 
for what the software is, or the auxiliary domain of programming concepts (like the 
message-passing system, for example). 

Let's compose an impure script for obtaining n values from a sensor once a second. It 
gets current time, compares it with the old time stamp, and if the difference is bigger than 
the delay desired, it reads the sensor and decrements a counter. When the counter hits zero, 
all n values are read. Here is a Haskell-like pseudocode: 

 
-- Function from system library: 
getTime :: IO Time 
-- Function from hardware-related library: 
readDevice :: Controller -> Parameter -> IO Value 
 
-- "eDSL" (not really): 
readNEverySecond n controller parameter = do 
    t <- getTime 
    out <- reading' n ([], t) controller  parameter 
    return (reverse out) 
 
-- Auxiliary recursive function: 
reading' 0 (out, _) _ _ = return out 
reading' n (out, t1) controller parameter = do 
    t2 <- getTime 
    if (t2 – t1 >= 1) 
    then do 
        val <- readDevice controller parameter 
        reading' (n-1) (val:out, t2) controller  parameter 
    else reading' n (out, t1) controller name 

 

 



Alexander Granin / Functional Design and Architecture  / Draft 0.9.0​ 7 

This whole code looks ugly. It wastes CPU time by looping indefinitely and asks time from the 
system very often. It can't be normally configured by a custom time interval, because the 
readNEverySecond function is too specific. Imagine how many functions will be in our 
eDSL for different purposes! 
 

readNEverySecond 
readTwice 
readEveryTwoSecondsFor10Seconds 
... 

 
And the biggest problem with this eDSL is that our functions aren't that handy for use in 
higher-level scenarios. Namely, these functions violate the Single Responsibility Principle: 
there are mixed responsibilities of reading of a sensor, counting the values and of asking the 
time. This DSL isn't combinatorial, because it doesn't provide any functions with single 
behavior you might use as a constructor to solve your big task. The code above is an 
example of spagetti-like functional code.  

Let's turn the preceding code into a combinatorial language. The simplest way to get 
composable combinators is to convert the small actions into the higher-order functions, 
partially applied functions, and curried functions: 

 
-- Functions from system libraries: 
threadDelay :: DiffTime -> IO () 
replicate :: Int -> a -> [a] 
sequence :: Monad m => [m a] -> m [a] 
(>>=) :: Monad m => m a -> (a -> m b) -> m b 
 
-- Function from hardware-related library: 
readDevice :: Controller -> Parameter -> IO Value 
 
-- eDSL: 
delay :: DiffTime -> Value → IO Value 
delay dt value = do 
    threadDelay dt 
    return value 
 
times :: Int -> IO a -> IO [a] 
times n f = sequence (replicate n f) 
 
-- Script: 
readValues :: DiffTime -> Int -> Controller -> Parameter -> IO [Value] 
readValues dt n controller param = times n (reader >>= delayer) 
    where 
        reader = readDevice controller param 
        delayer = delay dt 

 
Let's characterize this code: 

▪​ Impure. It makes unit testing hard or even impossible. 
▪​ Instantly executable. We stated earlier in the previous chapter that interpretable 

languages give us another level of abstraction. You write a script but it really can't be 
executed immediately but rather it should be translated into executable form first and 
then executed. This means your script is declarative. The closest analogy here is string 
of code the eval function will evaluate in such languages as PHP and JS. So you don't 
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describe your domain in a specific language, you program your domain in the host 
language.  1

▪​ Vulnerable. Some decisions (like threadDelay, which blocks the current thread) 
can't be considered acceptable; there should be a better way. Indeed, we'll see many 
ways better than the eDSL implemented as shown here. 

Interestingly, every part of functional code that unites a set of functions can be called an 
internal DSL for that small piece of the domain. From this point of view, the only measure or 
a function to be a part of a DSL is to reflect its notion with the appropriate naming. 

4.2.2​ Domain model eDSL using ADTs 
It's hard to imagine functional programming without algebraic data types. ADTs cover all 
your needs when you want to design a complex data structure — tree, graph, dictionary, and 
so forth — but they are also suitable for modeling domain notions. Scientifically speaking, an 
ADT can be thought of as “a sum type of product types,” which simply means “a union of 
variants” or “a union of named tuples.” Algebraic type shouldn't necessarily be an exclusive 
feature of a functional language, but including ADTs into any language is a nice idea due to 
good underlying theory. Pattern matching, which we already dealt with in the previous 
chapter, makes the code concise and clean, and the compiler will guard you from missing 
variants to be matched. 

Designing the domain model using algebraic data types can be done in different ways. 
The Procedure data type we developed in chapter 2 represents a kind of straightforward, 
naive approach to sequential scenarios. The following listing shows this type. 

 

Listing 4.1 Naive eDSL using algebraic data type 

-- These types are defined by a separate library 
data Value = FloatValue Float 
           | IntValue Int 
           | StringValue String 
           | BoolValue Bool 
           | ListValue [Value] 
 
-- Dummy types, should be designed later 
data Status = Online | Offline 
data Controller = Controller String 
data Power = Float 
type Duration = Float 
type Temperature = Kelvin Float 
 
data Procedure  
    = Report Value 
    | Store Value 
    | InitBoosters (Controller -> Script) 
    | ReadTemperature Controller (Temperature -> Script) 
    | AskStatus Controller (Status -> Script) 
    | HeatUpBoosters Power Duration 
 

1​ Well, the line between programming of a domain and describing it using an eDSL is not that clear. We 
can always say that the I/O action isn't really a procedure, but a definition of a procedure that will be evaluated 
later. 

 



Alexander Granin / Functional Design and Architecture  / Draft 0.9.0​ 9 

type Script = [Procedure] 
 

The “procedures” this type declares are related to some effect: storing a value in a database, 
working with boosters after the controller is initialized, reporting a value. But they are just 
declarations. We actually don't know what real types will be used in runtime as a device 
instance, as a database handler and controller object. We abstract from the real impure 
actions: communicating with databases, calling library functions to connect to a controller, 
sending report messages to remote log, and so on. This language is a declaration of logic 
because when we create a value of the Script type, nothing actually happens. Something 
real will happen when we'll bind these actions to real functions that do the real work. Notice 
also the sequencing of procedures is encoded as a list, namely the Script type. This is how 
a script may look: 
 

storeSomeValues :: Script  
storeSomeValues =  
    [ StoreValue (FloatValue 1.0)  
    , StoreValue (FloatValue 2.0)  
    , StoreValue (FloatValue 3.0) ]  

 
This script may be transferred to the subsystem that works with the database. There should 
be an interpreting function that will translate the script into calls to real database, something 
like that: 
 

-- imaginary bindings to database interface: 
import Control.Database as DB 
 
-- interpreter: 
interpretScript :: DB.SQLiteConnection -> Script -> IO () 
interpretScript conn [] = return () 
interpretScript conn (StoreValue v : procs) = do 
    DB.store conn "my_table" (DB.format v) 
    interpretScript procs 
interpretScript conn (unknownProc : procs) = interpretScript procs 

 
It should be clear why three of value constructors (Report, Store, HeatUpBoosters) 
have arguments of a regular type. We pass some useful information the procedure should 
have to function properly. We don’t expect the evaluation of these procedures will return 
something useful. However, the other three procedures should produce a particular value 
when they are evaluated. For example, the procedure of boosters initialization should 
initialize the device and then return a sort of handle to its controller. Or one more example: 
being asked for temperature, that controller should give you a measured value back. To 
reflect this fact, we declare additional fields with function types in the “returning” value 
constructors: (Controller -> Script), (Status -> Script) and (Temperature 
-> Script). We also declare the abstracted types for values that should be returned 
(Controller, Status, Temperature). This doesn't mean the particular subsystem will 
use exactly these types as runtime types. It's more likely the real interpreter when it meets a 
value of Controller type will transform it to its own runtime type, let's say, 
ControllerInstance. This ControllerInstance value may have many useful fields 
such as time of creation, manufacturer, GUID, and we don't have to know about that stuff. 
The only thing we should know is that successful interpretation of InitBoosters should 
return some handle to the controller. But why do we use function type (Controller -> 
Script) to   declare this behavior? The reason is we want to do something with the value 
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returned. We may want to read temperature using the controller instance. This means we 
want to combine several actions, make them chained, dependent. This is easily achievable if 
we adopt the same ideas we discussed in the previous chapter: we use recursive nesting of 
continuations for this purpose. The field (Controller -> Script) of the 
InitBoosters will hold a lambda that declares what to do with the controller handle we 
just obtained. By the design of the language, all we can do now is to read the temperature or 
to ask the status. The following demonstrates a complex script: 
 

doNothing :: Temperature -> Script 
doNothing _ = [] 
 
readTemperature :: Controller -> Script 
readTemperature controller = [ ReadTemperature controller doNothing ] 
 
script :: Script 
script = [ InitBoosters readTemperature ] 

 
Now all three scripts are combined together.   For simplicity we may say that the 
InitBoosters procedure “returns” Controller, ReadTemperature “returns” 
Temperature, and AskStatus “returns” the controller's status 

Listing 4.2 gives you one more example that contains a script for the following scenario: 

1.​ Initialize boosters and get a working controller as result. 
2.​ Read current temperature using the controller. Process this value: report it and store it 

in the database. 
3.​ Heat up boosters for 10 seconds with power 1. 
4.​ Read current temperature using the controller. Process this value: report it and store it 

in the database. 
 

Listing 4.2 Script for heating the boosters and reporting the temperature 
-- Step 1 of the scenario. 
initAndHeatUpScript :: Script  
initAndHeatUpScript = [ InitBoosters heatingUpScript ] 
 
-- Steps 2, 3 and 4 of the scenario. 
heatingUpScript :: Controller -> Script  
heatingUpScript controller =  
    [ ReadTemperature controller processTemp  
    , HeatUpBoosters 1.0 (seconds 10)  
    , ReadTemperature controller processTemp ]  
 
-- Scripts for steps 2 and 4. 
reportAndStore :: Value -> Script  
reportAndStore val = [ Report val, Store val ]  
 
processTemp :: Temperature -> Script  
processTemp t = reportAndStore (temperatureToValue t) 
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An impure testing interpreter we wrote earlier (see listing 2.5) traces every step of the script 
to the console. The following listing shows the interpretation for the script 
initAndHeatUpScript: 
 

"Init boosters" 
"Read temperature" 
"Report: FloatValue 0.0" 
"Store: FloatValue 0.0" 
"Heat up boosters" 
"Read temperature" 
"Report: FloatValue 0.0" 
"Store: FloatValue 0.0" 

 
Unfortunately, the approach of modeling a domain 1:1 in algebraic data types has many 
significant problems: 

▪​ It’s too object-oriented. Types you design by copying the domain notions, will tend to 
look like “classes” (the Controller type) and “methods” (the ReadTemperature 
value constructor). A desire to cover all of the domain notions will lead you to the 
notions-specific code because it's less likely you'll see abstract properties of your data 
by exploiting which you could probably join several notions into one generic. For 
example, the procedures Store and Report may be generalized by just one 
(SendTo Receiver Value) procedure that is configured by the specific receiver: 
either a database or reporter or something else you need. The Receiver type can be 
a lambda that knows what to do: (type Receiver :: Value -> IO ()), 
however your domain doesn't have this exact object, and you should invent it yourself. 

▪​ Different scopes are mixed in just one God-type Procedure. It's easy to dump 
everything into a single pile. In our case, we have two scopes that seem to be 
separate: the procedures for working with the controller and the reporting/storing 
procedures. 

▪​ It’s inconvenient. Verbose lists as sequence of actions, value constructors of the 
Procedure type you have to place in your code, limits of the actions you may do with 
your list items, - all these issues restrict you too much. 

▪​ It encodes a domain “as is.” The wider a domain is, the fatter the DSL will be. It's like 
when you create classes DeadCell and AliveCell inheriting them from the interface 
IGameOfLifeCell, and your class Board holds a FieldGraph of these objects 
which are connected by GraphEdge objects... And this whole complexity can be 
removed by just one good old two-dimensional array of short integers. If there is a 
lesser set of meaningful abstractions your domain can be described by, why to avoid 
them? 

▪​ It’s primitive. The language doesn't provide any useful abstractions. 
The issues listed can be summarized as the main weakness of this modeling approach: we 
don't see the underlying properties of a domain. Despite this, there are some good points 
here: 

▪​ Straightforward modeling is fast. It may be useful for rapid prototype development or 
when the domain is not so big. It also helps to understand and clarify the 
requirements. 

▪​ It’s simple. There are only two patterns all the “procedures” should match: specifically, 
a procedure with a return type and a procedure without one. This also means the 
approach has low accidental complexity. 
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▪​ The eDSL is safe. If the language says you can't combine two incompatible 
procedures, then you can't, really. 

▪​ The eDSL is interpretable. This property allows you to mock subsystems or process an 
eDSL in different ways. 

▪​ The eDSL can be converted to a Free monad eDSL. When it's done, the domain is 
effectively hidden behind the monadic interface so the client code won't be broken if 
you change the internal structure of your eDSL. 

We will soon see how to decompose our domain into much smaller, consistent and 
high-cohesive parts than this eDSL has. We'll then investigate the properties these parts 
have. This should enlighten us by hinting at how to design a better, combinatorial eDSL. 

4.3​ Combinatorial eDSLs 
Functional programming is finally entering the mainstream, its emergence stemming from 
three major directions: functional languages are becoming more popular, mainstream 
languages are extending their syntax with functional elements, and functional design 
patterns are being adopted by cutting-edge developers. While  enthusiasts are pushing this 
wave, they are continuing to hear questions about what functional programming is and why 
people should care. The common use case of lambdas we see in the mainstream is passing 
simple operations into library functions that work with collections generically. For example, 
the operations over an abstract container in the C++ Standard Template Library may receive 
lambdas for comparison operators, for accumulation algorithms, and so on. But be careful 
about saying this kind of lambda usage is functional programming. It's not; it's just elements 
of functional programming but not a functional design. The essence of functional 
programming is composition of combinators and the functional idioms which make this 
composition possible. For example, the function map :: (a -> b) -> [a] -> [b] is a 
combinator that takes a function, a list and returns a new list with every element modified by 
that function. The function map is a combinator because you can combine several of them: 
 

morseBelt :: Int -> [String] 
morseBelt = map (' ' :) . map toMorse . map toLower . fizzBuzz 

 
And you even may improve this code according to the rewriting rule: 
 

map f . map g == map (f . g) 
 
morseBelt' :: Int -> [String] 
morseBelt' = map ((' ' :) . toMorse . toLower) . fizzBuzz 

 
It would be wrong to say that a procedure that simply takes a lambda function (for instance, 
std::sort() in C++) is functional programming. The procedure isn't a combinator because 
it's not a function and therefore you can't combine it with something else. In fairness, the 
C++ Standard Template Library is the implementation of generic style programming that is 
close to functional programming, but many of the functions this library has imply both 
mutability and uncontrolled side effects. Immutability and side effects may ruin your 
functional design. 
 
Functional programming abounds with embedded combinatorial languages. The accidental 
complexity of a language you design in combinatorial style is small due to the uniform way of 
reasoning about combinatorial code, regardless of the size of the combinators. Have you 
heard of the Parsec library, perhaps the best example of a combinatorial language? Parsec is 
a library of monadic parsing combinators. Every monadic parser it provides parses one small 
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piece of text. Being monadic functions in the Parser monad, parsers can be combined 
monadically into a bigger monadic parser that is in no way different but works with a bigger 
piece of text. Monadic parsers give a look to a code like it's a Backus–Naur Form (BNF) of the 
structure you are trying to extract from text. Reading of such code becomes simple even for 
nonprogrammers after they have had a little introduction to BNF and monadic parsing 
concepts. Consider the following example of parsing constant statements. The text we want 
to parse looks so: 
 

const thisIsIdentifier = 1 
 
The following code shows parser combinators and the Statement structure in which we'll 
keep the result parsed: 
 

import Text.Parsec as P 
data Expr = …     -- some type to hold expression tree. 
data Statement = ConstantStmt String Expr 
 
constantStatement :: P.Parser Statement 
constantStatement = do 
    P.string "const"           -- parses string "const" 
    P.spaces                   -- parses one or many spaces 
    constId <- identifier      -- parses identifier 
    P.spaces                   -- parses spaces again 
    P.char '='                 -- parses char '=' 
    P.spaces                   -- parses spaces, too 
    e <- expr                  -- parses expression 
    return (ConstantStmt constId e) 
 
str = "const thisIsIdentifier     =    1" 
parseString = P.parse constantStatement "" str 

 
Here, identifier and expr are the parser combinators having the same Parser a type: 
 

identifier :: Parser String 
expr :: Parser Expr 

 
We just put useful stuff into variables and wrapped it in the Statement algebraic data type. 
The corresponding BNF notation looks very similar: 
 

constantStatement ::= "const" spaces identifier spaces "=" spaces exprAnd 
 
If we line every token of BNF it becomes even closer to the parser: 
 

constantStatement ::= 
    "const" 
    spaces 
    identifier 
    spaces "=" spaces 
    expr 

 
We'll return to this theme in section 4.4. There we will build an external DSL with its own 
syntax. Parsec will help us to parse external scripts into abstract syntax trees that we then 
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translate to our combinatorial eDSL (going ahead, it will be a compound Free eDSL with 
many Free DSLs inside). Before that we should create an eDSL. Let's do this. 

4.3.1​ Mnemonic domain analysis 
The Procedure data type was modeled to support the scenario of heating boosters, but we 
haven’t yet analyzed the domain deeply because the requirements were incomplete. We just 
projected a single scenario into ADT structure one-to-one and got what we got: an 
inconsistent DSL with dissimilar notions mixed together. In this section we'll redesign this 
eDSL and wrap the result into several combinatorial interfaces — but we have to revisit the 
domain of Logic Control first. 

We'll now try a method of analysis that states a scenario to be written in mnemonic form 
using various pseudolanguages. Determining the internal properties of domain notions can't 
be done effectively without some juggling of the user scenarios being written in 
pseudolanguages. The juggling can also lead you to surprising ideas about how to compose 
different parts uniformly or how to remove unnecessary details by adopting a general 
solution instead. 

The next scenario we'll be working with collects several needs of the Logic Control 
subsystem (conditional evaluation, mathematical calculations, and handling of devices): 

 
Scenario: monitor outside thermometer temperature 
Given: outside thermometer @therm 
Run: once a second 
 
scenario: 
    Read temperature from @therm, result: @reading(@time, @temp, @therm) 
    If @temp < -10C Then 
        register @reading 
        log problem @reading 
        raise alarm "Outside temperature lower than bound" 
    Else If @temp > 50C Then 
        register @reading 
        log problem @reading 
        raise alarm "Outside temperature higher than bound" 
    Else register @reading 
 
register (@time, @tempCelsius, @device): 
    @tempCelsius + 273.15, result: @tempKelvin 
    Store in database (@time, @tempKelvin, @device) 

 
It should be clear that the scenario reads a thermometer and then runs one of the possible 
subroutines: registering the value in a database if the temperature doesn't cross the bounds; 
logging the problem and raising an alarm otherwise. The register subroutine is defined 
too. It converts the value from Celsius to Kelvin and stores it in the database along with 
additional information: the timestamp of the measurement and the device from which the 
value was read. 

According to the Logic Control elements diagram (see figure 2.13), the instructions this 
scenario has can be generalized and distributed to small, separate domain-specific 
languages: Calculations DSL, Data Access DSL, Fault Handling DSL, and so on. Within one 
DSL, any instruction should be generalized to support a class of real actions rather than one 
concrete action. A language constructed this way will resist domain changes better than a 
language that reflects the domain directly. For example, there is no real sense in holding 
many different measurements by supporting a separate action for each of them, as we did 
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earlier, because we can make one general parameterized action to code a whole class of 
measurements: 

 
data Parameter = Pressure | Temperature 
data Procedure = Read Controller Parameter (Measurement -> Script) 

 
where the Parameter type will say what we want to read. 

Looking ahead... 

In the Andromeda project the type Procedure looks different. The Read value 
constructor has one more field with type ComponentIndex that is just ByteString. 
It holds an index of a sensor inside a device to point to one of them that is plugged 
inside. The types Parameter and Measurement are different too. They have one extra 
type variable tag: (Parameter tag) and (Measurement tag) that is really a 
phantom type to keep the parameter and the measurement consistent. This phantom 
type ensures these two fields work with the same measurement units. For example, if we 
read temperature then we should write (Parameter Kelvin) and we'll then get the 
value of (Measurement Kelvin) by no exception. This is the theme of the chapter 
about type logic calculations. If you are interested, the Procedure type is presented 
below. Don't be scared by forall keyword, you may freely ignore it now. 

data Procedure a 
    = Get Controller Property (Value -> a) 
    | Set Controller Property Value a 
    | forall tag. Read 
        Controller ComponentIndex (Parameter tag) (Measurement tag -> a) 
    | Run Controller Command (CommandResult -> a) 

 

A different conclusion we may draw from the scenario is that it's completely imperative. All 
the parts have some instructions that are clinging to each other. This property of the scenario 
forces us to create a sequential embedded domain language, and the best way to do this is 
to wrap it in a monad. We could use the IO monad here, but we know how dangerous it can 
be if the user of our eDSL has too much freedom. So we'll adopt a better solution—namely, 
the Free monad pattern—and see how it can be even better than we discussed in chapter 3. 

However, being sequential is not a must for domain languages. In fact, we started 
thinking our scenario was imperative because we didn't try any other forms of mnemonic 
analysis. Let's continue juggling and see what happens: 

 
Scenario: monitor outside thermometer temperature 
Given: outside thermometer @therm 
 
// Stream of measurements of the thermometer 
stream therm_readings <once a second>: 
    run script therm_temperature(), result: @reading 
    return @reading 
 
// Stream of results of the thermometer 
stream therm_monitor <for @reading in therm_readings>: 
    Store in database @reading 
    run script validate_temperature(@reading), result: @result 
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    If @result == (Failure, @message) Then 
        log problem @reading 
        raise alarm @message 
    return @result 
 
// Script that reads value from the thermometer 
script therm_temperature: 
    Read temperature from @therm, result: @reading(@time, @tempCelsius, 
@therm) 
    @tempCelsius + 273.15, result: @tempKelvin 
    return (@time, @tempKelvin, @therm) 
     
// Script that validates temperature 
script validate_temperature (@time, @temp, @therm): 
    If @temp < 263.15K Then 
        return (Failure, "Outside temperature lower than bound for " + 
@therm) 
    Else If @temp > 323.15K Then 
        return (Failure, "Outside temperature higher than bound for " + 
@therm) 
    Else return Success 

 
Oh, wow! This scenario is more wordy than the previous one, but you see a new object of 
interest here — a stream. Actually, you see two of them: the therm_readings stream that 
returns an infinite set of measurements and the therm_monitor stream that processes 
these values and does other stuff. Every stream has the evaluation condition: once a second 
or whenever the other stream is producing a value. This makes the notion of a stream 
different from a script: the former works periodically and infinitely, whereas the latter should 
be called as a single instruction. 

This form of mnemonic scenario opens a door to many functional idioms. The first, which 
is perhaps obvious, is functional reactive streams. These streams run constantly and produce 
values you can catch and react to. “Functionality” of streams means you can compose and 
transform them in a functional way. Reactive streams are a good abstraction for 
interoperability code, but here we’re talking about the design of a domain model rather than 
the architecture of the application. In our case, it's possible to wrap value reading and 
transforming processes into the streams and then construct a reactive model of the domain. 
The scenario gives a rough view of how it will look in code. 

Functional reactive streams could probably be a beneficial solution to our task, but we'll 
try something more functional (and perhaps more mind-blowing): arrows and arrowized 
languages. The scenario doesn't reveal any evidence of this concept, but in fact, every 
function is an arrow. Moreover, it's possible to implement an arrowized interface to reactive 
streams to make them even more composable and declarative. Consequently, using this 
concept you may express everything you see in the scenario, like scripts, mathematical 
calculations, or streams of values, and the code will be highly mnemonic. So what is this 
mysterious concept of arrows? Keep reading; the truth is out there. First, though, we'll return 
to the simple and important way of creating composable embedded languages, using the 
Free monad pattern, and see how it can be improved. 

4.3.2​ Monadic Free eDSL 
Any monad abstracts a chain of computations and makes them composable in a monadic 
way. Rolling your own monad over the computations you have can be really hard because not 
all sequential computations can be monads in a mathematical sense. Fortunately, there is a 
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shortcut that is called “the Free monad pattern.” We discussed this pattern already in 
Chapter 3, and now we'll create another Free language that will be abstract, with the 
implementation details hidden. Let's revise the “free monadizing” algorithm. See table 4.1 

Table 4.1: The algorithm of making a Free language 

Algorithm step Example 

Create parameterized ADT for domain 
logic where type variable a is needed to 
make the type a Functor. 

data FizzBuzz a  
    = GetFizz Int Int (String -> a) 
    | GetBuzz Int Int (String -> a) 
    | GetNum  Int Int (String -> a) 

Make it an instance of Functor by 
implementing the fmap function. Every 
Functor type should be parameterized to 
carry any other type inside. 

instance Functor FizzBuzz where 
    fmap f (GetFizz n m next) 
        = GetFizz n m (fmap f next) 
    fmap f (GetBuzz n m next) 
        = GetBuzz n m (fmap f next) 
    fmap f (GetNum n m next) 
        = GetNum  n m (fmap f next) 

Create a Free monad type based on your 
Functor. 

type FizzBuzzer a = Free FizzBuzz a 

Create smart constructors that wrap (lift) 
your ADT into your Free monad type. 
You may either use the liftF function 
or define it by hand: 

-- Automatically wrapped (lifted): 
getFizz, getBuzz, getNum 
    :: Int -> Int -> FizzBuzzer String 
getFizz n m = liftF (GetFizz n m id) 
getBuzz n m = liftF (GetBuzz n m id) 
getNum z n  = liftF (GetNum  z n id) 
 
-- Manually wrapped: 
getFizz', getBuzz', getNum' 
    :: Int -> Int -> FizzBuzzer String 
getFizz' n m = Free (GetFizz n m Pure) 
getBuzz' n m = Free (GetBuzz n m Pure) 
getNum' z n  = Free (GetNum  z n Pure) 

Your language is ready. Create 
interpreters and scripts on your taste. 

getFizzBuzz :: Int -> FizzBuzzer String 
getFizzBuzz n = do 
    fizz <- getFizz n 5 
    buzz <- getBuzz n 3 
    let fb = fizz ++ buzz 
    s <- getNum (length fb) n 
    return $ s ++ fizz ++ buzz 

 
First, we'll generalize working with remote devices. In reality, all things we do with sensors 
and devices we do by operating the intellectual controller that is embedded into any 
manageable device. So reading measurements from a sensor is equivalent to asking a 
controller to read measurements from that particular sensor, because one device can have 
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many sensors. In turn, measurements vary for different kinds of sensors. Also, the controller 
has an internal state with many properties that depend on the type of the controller, for 
example, its local time, connectivity status, errors The scripting language should allow us to 
get and set these properties (in a limited way, possibly). Finally, the device may be intended 
to do some operations: open and close valves, turn lights on and off, start and stop 
something, and more. To operate the device, we send a command to the controller. Knowing 
that, we are able to redesign our Procedure data type as shown in the following listing. 

Listing 4.3 Improved Procedure eDSL for working with remote devices 

-- These types are defined in a separate library 
data Value = FloatValue Float 
           | IntValue Int 
           | StringValue String 
           | BoolValue Bool 
           | ListValue [Value] 
data Measurement = Measurement Value 
data Parameter = Temperature | Pressure 
 
-- Dummy types, should be designed later 
data Property = Version | Status | SensorsList 
data Controller = Controller String 
data Command = Command String 
type CommandResult = Either String String 
type SensorIndex = String 
 
-- Parametrized type for a Free eDSL 
data Procedure a 
    = Set Controller Property Value a      #A 
    | Get Controller Property (Value -> a)           #B 
    | Run Controller Command (CommandResult -> a)    #B 
    | Read Controller SensorIndex Parameter (Measurement -> a) 

#A “Non-returning” definition 
#B “Returning” definitions 

NOTE The Measurement type knows nothing about measurement units. This is a 
problem. What if you requested a Temperature parameter but accidentally got 
pressure units? How would your system behave then? In the Andromeda project, this 
type is improved by a phantom type tag: (Measurement tag), so you really should 
use it with units like so: (Measurement Kelvin). The Parameter type also has this 
tag: (Parameter tag). These two types while used at once require units to be 
consistent, that means the values should have types with identical tags. For more 
information you may look into the Andromeda project or read the chapter about 
type-level logic. 

This new language is composed of instructions to work with remote devices through a 
controller.  This type is also parameterized by a type variable because it will be a Free 
monad language, and we need to make it a Functor. To illustrate this better, we'll need to 
complete the rest of the “free monadizing” algorithm: namely, make this type an instance of 
Functor and provide convenient smart constructors. Listing 4.4 shows the instance: 

Listing 4.4: The instance of Functor for the Procedure type 
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instance Functor Procedure where 
    fmap g (Set  c p v next) = Set  c p v  (g next) 
    fmap g (Get  c p nextF)      = Get  c p    (g . nextF) 
    fmap g (Read c si p nextF)   = Read c si p (g . nextF) 
    fmap g (Run  c cmd nextF)    = Run  c cmd  (g . nextF) 

 
Let's figure out how this works and why there are two sorts of application of the g function 
passed to fmap: 
 

(g next) 
(g . nextF) 

 
From the previous chapter we know that a type is a Functor if we can apply some function 
g to it's contents without changing the whole structure. The fmap function will do the 
application of g for us, so to make a type to be a Functor, we should define how the fmap 
function behaves. The Free monad uses the fmap function to nest actions in continuation 
fields we provide in our domain algebra. This is the main way to combine monadic operations 
(actions) in the Free monad. So every value constructor of our algebra should have a 
continuation field. 

We have four value constructors encoding four domain operations (actions) in the 
Procedure type. The Set value constructor is rather simple: 

 
data Procedure a 
    = Set Controller Property Value a 

 
It has four fields of type Controller, Property, Value and a continuation field with a 
generic type a. This field should be mappable in the sense of Functor. This means, the 
fmap function should apply a generic g function to this continuation field: 
 

fmap g (Set c p v next) = Set c p v (g next) 
 
We call this field next because it should be interpreted next to the Set procedure.  
The last fields every value constructor has denoted the continuation. In other words, this is 
the action that should be evaluated next. Also, the action encoded by the Set value 
constructor, returns nothing useful. However the actions encoded by the Get, Read, and 
Run, value constructors, do return something useful, namely the Value, Measurement, and 
CommandResult values, respectively. That is why the continuation fields differ. It's now not 
just of type a but of function type (someReturnType -> a): 
 

data Procedure a 
    = Get Controller Property (Value -> a) 
    | Run Controller Command (CommandResult -> a) 
    | Read Controller SensorIndex Parameter (Measurement -> a) 

 
Such continuation fields hold actions that know what to do with the value returned. When the 
Free monad combines two actions it ensures the value the first action returns is what the 
second action is awaiting as the argument. For example, when the Get value constructor is 
interpreted, it will return a value of type Value. The nested action should be of type (Value 
-> something) to be combined. 

The fmap function counts that. It receives the g function and applies to the mappable 
contents of this concrete value constructor: 
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fmap g (Get c p nextF) = Get c p (g . nextF) 

 
The application of function g to a regular value next is just (g next) as it's shown above. 
The application of function g to a function nextF is composition of them: (g . nextF). We 
map function g over the single field and leave all other fields unchanged. 

The trick of nesting of continuations is exactly the same one we used in the previous 
version of the Procedure type but now we are dealing with a better abstraction - the Free 
monad pattern. Strictly speaking, the Free monad pattern is able to handle returning values 
by keeping a continuation in the field with a function type, and a continuation is nothing 
more than a function in the same monad that accepts a value of the input type and 
processes it. 

The next step of the “free monadizing” algorithm is presented in listing 4.5. We define a 
synonym for the Free type and declare smart constructors: 

Listing 4.5: Type for monadic eDSL and smart constructors 

type ControllerScript a = Free Procedure a 
 
-- Smart constructors: 
set :: Controller -> Property -> Value -> ControllerScript () 
set c p v = Free (Set c p v (Pure ())) 
 
get :: Controller -> Property -> ControllerScript Value 
get c p = Free (Get c p Pure) 
 
read :: Controller -> SensorIndex -> Parameter 
     -> ControllerScript Measurement 
read c si p = Free (Read c si p Pure) 
 
run :: Controller -> Command -> ControllerScript CommandResult 
run c cmd = Free (Run c cmd Pure) 

 
These smart constructors wrap procedures into the monadic ControllerScript a type 
(the same as Free Procedure a). To be precise, they construct a monadic value in the 
Free monad parametrized by the Procedure functor. We can't directly compose value 
constructors Get, Set, Read and Run in the monadic scripts. The Procedure a type is 
not a monad, just a functor. But the set function and others make a composable combinator 
in the ControllerScript monad instead. This all may be looking monstrously, but it's 
actually not that hard, just meditate over the code and try to transform types one into other 
starting from the definition of the Free type (we discussed it in the previous chapter): 

data Free f a = Pure a 
              | Free (f (Free f a)) 

 
You'll discover the types Free and Procedure are now mutually nested in a smart recursive 
way. 

Notice the Pure value constructor in the smart constructors. It denotes the end of the 
monadic chain. You can put Pure () into the Set value constructor, but you can't put it into 
the Get, Read and Run value constructors. Why? You may infer the type of the Get's 
continuation field as we did it in the previous chapter. It will be (Value -> 
ControllerScript a) while Pure () has type ControllerScript a. You just need a 
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function instead of regular value to place it into a continuation field of this sort. The partially 
applied value Pure :: a -> Free f a is what you need. Compare this carefully: 

 
set c p v = Free (Set c p v (Pure ())) 
get c p = Free (Get c p Pure) 
 
fmap g (Set c p v next) = Set  c p v (g next) 
fmap g (Get c p nextF) = Get c p (g . nextF) 
 

Whenever you write Pure, you may write return instead, they do the same thing. 
 

set c p v = Free (Set c p v (return ())) 
get c p = Free (Get c p return) 
 

In the monad definition for the Free type, the return function is defined to be a partially 
applied Pure value constructor: 

 
instance Functor f => Monad (Free f) where 
    return = Pure 
 
-- Monadic composition 
    bind (Pure a) f = f a 
    bind (Free m) f = Free ((`bind` f) <$> m) 
 

Don't care about the definition of the monadic bind. We don't need it in this book. 
The sample script is presented in listing 4.6. Notice it's composed from the get action 

and the process action. The process function works in the same monad 
ControllerScript, so it may be composed with other functions of the same type 
monadically. 

Listing 4.6: Sample script in the eDSL 

controller = Controller "test" 
sensor = "thermometer 00:01" 
version = Version 
temperature = Temperature 
 
-- Subroutine: 
process :: Value -> ControllerScript String 
process (StringValue "1.0") = do 
    temp <- read controller sensor temperature 
    return (show temp) 
process (StringValue v) = return ("Not supported: " ++ v) 
process _ = error "Value type mismatch." 
 
-- Sample script: 
script :: ControllerScript String 
script = do 
    v <- get controller version 
    process v 
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Let's now develop an sample interpreter. After that, we'll consider how to hide the details of 
the language from the client code. Whether the value constructors of the Procedure type 
should be public? It seems, this isn't a must While they are public,  the user can interpret a 
language by pattern matching. The listing 4.7 shows how we roll out the structure of the 
Free type recursively and interpret the procedures nested one inside another. The deeper a 
procedure lies, the later it will be processed, so the invariant of sequencing of the monadic 
actions is preserving. 

Listing 4.7 Possible interpreter in the IO monad 

{- Impure interpreter in the IO monad that prints every instruction 
   with parameters. It also returns some dummy values 
   for Get, Read, and Run instructions. -} 
 
interpret :: ControllerScript a -> IO a 
interpret (Pure a) = return a 
interpret (Free (Set c p v next)) = do     #A 
    print ("Set", c, v, p) 
    interpret next                         #B 
interpret (Free (Get c p nextF)) = do      #C 
    print ("Get", c, p) 
    interpret (nextF (StringValue "1.0"))  #D 
interpret (Free (Read c si p nextF)) = do 
    print ("Read", c, si, p) 
    interpret (nextF (toKelvin 1.1)) 
interpret (Free (Run c cmd nextF)) = do 
    print ("Run", c, cmd) 
    interpret (nextF (Right "OK.")) 

#A next keeps the action to be interpreted next. 
#B Continue interpreting 
#C nextF keeps the function that is awaiting a value as argument 
#D Continue interpreting after the nextF action is received the value 

 
It's not a bad thing in this case, but does the interpreter provider  want to know about the 
Free type and how to decompose it with pattern matching? Do they want to do recursive 
calls? Can we facilitate their life here? Yes, we can. This is the theme of the next section. 

4.3.3​ The abstract interpreter pattern 
To conceal the Free monad nature of our language, to hide explicit recursion, and to make 
interpreters clean and robust, we need to abstract the whole interpretation process behind 
an interface — but this interface shouldn't restrict you in writing interpreters. It's more likely 
you'll wrap the interpreters into some monad. For instance, you can store operational data in 
the local state (the State monad) or immediately print values to the console during the 
process (the IO monad). Consequently, our interface should have the same expressiveness. 
The pattern we will adopt here has the name “the abstract interpreter.” 

The pattern has two parts: the functional interface to the abstract interpreter you should 
implement, and the base interpret function that calls the methods of the interface while a 
Free type is recursively decomposed. Let's start with the former. It will be a specific type 
class, see Listing 4.8. 

Listing 4.8 Interface to abstract interpreter 

class Monad m => Interpreter m where 
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    onSet  :: Controller -> Property -> Value -> m () 
    onGet  :: Controller -> Property -> m Value 
    onRead :: Controller -> SensorIndex -> Parameter -> m Measurement 
    onRun  :: Controller -> Command -> m CommandResult 
 

The constraint Monad for type variable m you can see in the class definition says that every 
method of the type class should operate in some monad m. This obligates the instance of the 
interface to be monadic; we allow the client code to engage the power of monads, but we 
don't dictate any concrete monad. What monad to choose is up to you, depending on your 
current tasks. The type class doesn't have any references to our language;  no any value 
constructor of the Procedure type is present there. How will it work, then? Patience, we 
need one more part: the template interpreting function. It's very similar to the interpreting 
function in listing 4.7, except it calls the methods the type class Interpreter yields. The 
following listing demonstrates this code. 

Listing 4.9: Abstract interpreting function for the free eDSL 

module Andromeda.LogicControl.Language ( 
    interpret, 
    Interpreter(..), 
    ControllerScript, 
    get, 
    set, 
    read, 
    run 
  ) where 
 
{- here the content of listings 4.3, 4.4, 4.5 goes -} 
 
-- The base interpret function 
interpret :: (Monad m, Interpreter m) => ControllerScript a -> m a 
interpret (Pure a) = return a 
interpret (Free (Get c p next)) = do 
    v <- onGet c p 
    interpret (next v) 
interpret (Free (Set c p v next)) = do 
    onSet c p v 
    interpret next 
interpret (Free (Read c si p next)) = do 
    v <- onRead c si p 
    interpret (next v) 
interpret (Free (Run c cmd next)) = do 
    v <- onRun c cmd 
    interpret (next v) 

 
We hide the Procedure type, but we export the function interpret, the type class 
Interpreter, the type ControllerScript, and the smart constructors. What does this 
mean? Imagine you take this someone's weird library. You want to construct a script and 
interpret it too. The first task is easily achievable. Let's say you have written the script like in 
listing 4.6. Now you try to write an interpreter like in listing 4.7, but you can't because no 
value constructors are available outside the library. But you notice there is the interpret 
function that requires the type class Interpreter to be instantiated. This is the only way to 
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interpret your Free script into something real. You should have a parameterized type to 
make this type an instance of the Interpreter type class. The type should be an instance 
of a monad, also. Suppose, you are building an exact copy of the interpreter in listing 4.7. 
You should adopt the IO monad then. The code you'll probably write may look so: 
 

import Andromeda.LogicControl.Language 
 
instance Interpreter IO where 
    onSet c prop v = print ("Set", c, v, prop) 
    onGet c prop = do 
        print ("Get", c, prop) 
        return (StringValue "1.0") 
    onRead c si par = do 
        print ("Read", c, si, par) 
        return (toKelvin 1.1) 
    onRun c cmd = do 
        print ("Run", c, cmd) 
        return (Right "OK.") 

 
After this, you interpret the script in listing 4.6: 
 

interpret script 
 
-- The result 
-- ("Get",Controller "test",Version) 
-- ("Read",Controller "test","thermometer 00:01",Temperature) 
-- "Measurement (FloatValue 1.1) 

 
Hiding the implementation details will force the developer to implement the type class.  This 
is a functional interface to our subsystem. The functional interface to the language itself is 
now accompanied by the functional interface to the interpreter.  2

Other interpreters could be implemented inside other monads; for example, State or 
State + IO. A consequence of this design is that it keeps our interpreters consistent 
automatically, because when the language gets another procedure the Interpreter type 
class will be updated, and we'll get a compilation error until we update our instances. So we 
can't forget to implement a new method, in contrast to the previous design, where the Free 
language was visible for prying eyes. 

It's perfect, wouldn’t you agree? 

4.3.4​ Free language of Free languages 
Scripts we can write with the ControllerScript language cover only a small part of the 
domain, while the requirements say we need to operate with a database, raise alarms if 
needed, run calculations, and do other things to control the ship. These “subdomains” should 
be somewhat independent from each other because we don't want a mess like we saw in the 
“naive” language. Later we will probably add some capabilities for user input/output 
communication — this will be another declarative language that we can embed into our 
focused domain languages without too much trouble. There is a chance that you may find the 
approach I suggest in this section too heavy, but it gives us some freedom to implement 
domain logic partially, prove it correct with concise tests, and move on. When the skeleton of 

2​  The idea of this pattern is very close to the idea of the object-oriented Visitor pattern. But the 
functional pattern is better because it can restrict all impure and mutable operations by prohibiting the IO monad. 
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the application is designed well, we can return and complete the logic, providing the missing 
functionality. That is, such design allows us to stay on the top level, which is good in the 
early stages of development. 

Let's now discuss this design approach — a pointer of pointers to arrays of pointers to 
foo! Oh, sorry, wrong book... I meant a Free language of Free languages! 

The idea is to have several small languages to cover separate parts of the domain. Each 
language is intended to communicate with some subsystem, but not directly, because every 
language here is a Free eDSL. Remember, we make this “letter of intent” acting by the 
interpretation process. We can even say the compilation stage is our functional analogue of 
“late binding” from OOP. Our eDSLs are highly declarative, easily constructible, and 
interpretable. That's why we have another big advantage: the ease of translation of our 
scripts to an external language and back again (you'll see this in the corresponding section of 
this chapter). This would be very difficult to do otherwise. 

Check out the elements diagram for Logic Control (figure 2.13) and the architecture 
diagram (figure 2.15): this approach was born there, but it was a little cryptic and had 
inaccurate naming. We'll adopt these names for the languages: 

▪​ ControllerScript — The Free eDSL to communicate with the Hardware 
subsystem 

▪​ InfrastructureScript — The Free eDSL for logging, authorization, filesystem 
access, operating system calls, raising events, and so on (or maybe we should 
partition these responsibilities?) 

▪​ ComputationScript — The eDSL for mathematical computations (not a Free 
language, possibly) 

▪​ DataAccessScript — The Free eDSL for operating with the database 

▪​ ControlProgram — The Free eDSL that allows us to run any of the scripts and also 
provides reactive capabilities (we'll return to this in the next chapters) 

Figure 4.1 illustrates the whole design. 

 

Figure 4.1 Design of domain model. 

Pictures are good; code is better. Let's get familiar with the InfrastructureScript DSL 
shortly, see listing 4.10. 
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Listing 4.10: The InfrastructureScritp free DSL. 

{-# LANGUAGE DeriveFunctor #-}     #1 
module Andromeda.LogicControl.Language.Infrastructure 
 
-- Dummy types, should be designed later. 
type ValueSource = String 
type Receiver = Value -> IO () 
 
data Action a = StoreReading Reading a 
              | SendTo Receiver Value a 
              | GetCurrentTime (Time -> a) 
    deriving (Functor)                            #2 
 
type InfrastructureScript a = Free Action a 
 
storeReading :: Reading -> InfrastructureScript () 
sendTo :: Receiver -> Value -> InfrastructureScript () 
logMsg :: String -> InfrastructureScript () 
alarm :: String -> InfrastructureScript () 
getCurrentTime :: InfrastructureScript Time 

#1 Useful Haskell language extension 
#2 The automatic instantiation of a Functor type class in Haskell. 

 
Notice we went by a short path exist in Haskell: we automatically derived a Functor 
instance for the Action type (#2). No more annoying fmap definitions! We are too lazy to 
do all this boilerplate by our hands. This only works with the DeriveFunctor extension 
enabled (#1). 

Listing 4.11 displays the Script algebraic data type that ties many languages together. 

Listing 4.11 The Script container 

-- Script container, wraps all Free languages. 
data Script b = ControllerScriptDef (ControllerScript b) 
              | ComputationScriptDef (ComputationScript b) 
              | InfrastructureScriptDef (InfrastructureScript b) 
              | DataAccessScriptDef (DataAccessScript b) 

 
The b type denotes something a script returns. There are no any restrictions to what b 
should be. We may want to return value of any type. The following two scripts return 
different types: 
 

startBoosters :: ControllerScript CommandResult 
startBoosters = run (Controller "boosters") (Command "start") 
 
startBoostersScript :: Script CommandResult 
startBoostersScript = ControllerScriptDef startBoosters 
 
getTomorrowTime :: InfrastructureScript Time 
getTomorrowTime = do 
    time <- getCurrentTime 
    return (time + 60*60*24) 
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getTomorrowTimeScript :: Script Time 
getTomorrowTimeScript = InfrastructureScriptDef getTomorrowTime 

 
The problem here is that the type of the two “wrapped” functions startBoostersScript 
and getTomorrowTimeScript don't match. Script Time is not equal to Script 
CommandResult. This means, we have two different containers; what can we do with them? 
Suppose we want to unify all these scripts in one top-level composable free eDSL as it was 
intended in figure 4.1. Consider the first try: 
 

-- Top-level Free language. 
data Control b a = EvalScript(Script b) a 

 
This is the algebra that should store a script container. The container's type is parametrized, 
so we provide a type argument for Script b in the type constructor Control b. We know 
this type will be a functor. There should be a field of another type a the fmap function will be 
mapped over. Therefore we add this type parameter to the type constructor: Control b a. 
However we forgot a value of the b type a script will return. According to the Free monad 
pattern, the value must be passed to nested actions. The continuation field should be of 
function type: 
 

data Control b a = EvalScript(Script b) (b -> a) 
 
So far, so good. Let's define a Functor with the b type variable frozen, because it should be 
a Functor of the single type variable a: 
 

instance Functor (Control b) where 
    fmap f (EvalScript scr g) = EvalScript scr (f . g) 

 
And finally a Free type with a smart constructor: 
 

type ControlProgram b a = Free (Control b) a 
 
evalScript :: Script b -> ControlProgram b a 
evalScript scr = Free (EvalScript scr Pure) 

 
It's pretty good except it won't compile. Why? Is that fair? We did all what we usually do. We 
did it right. But the two type variables b the evalScript has the compiler can't match. It 
can't be sure they are equal for some weird reason. However if you'll try the following 
definition, it will compile: 
 

evalScript :: Script a -> ControlProgram a a 
evalScript scr = Free (EvalScript scr Pure) 

 
But it's all wrong because the type variable of the Script can't be specialized more than once. 
Consider the following script that should be of “quantum” type: 
 

unifiedScript :: ControlProgram ??? (CommandResult, Time) 
unifiedScript = do 
    time <- evalScript getTomorrowTimeScript 
    result <- evalScript startBoostersScript 
    return (result, time) 
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Why quantum? Because two scripts in this monad have return types CommandResult and 
Time but how to say it in the type definition instead of three question marks? Definitely, the 
b type variable takes two possible types in quantum superposition. I believe you may do so 
in some imaginary Universe, but here, quantum types are prohibited. The type variable b 
must take either CommandResult or Time type. But this completely ruins the idea of a 
Free language over Free languages. In dynamically typed languages this situation is gently 
avoided. Dynamic languages do have quantum types! Does that mean statically typed 
languages are defective? 

Fortunately, no, it doesn't. We just need to summon the type-level tricks and explain to 
the compiler what we actually want. The right decision here is to hide the b type variable 
behind the scenes. Look at the unifiedScript and the ControlProgram type again: do 
you want to carry b everywhere? I don't think so. This type variable denotes the return type 
from script. When you call a script, you get a value. Then you pass that value to the 
continuation. Consequently the only place this type exists is localized between the script 
itself and the continuation. The following code describes this situation: 

 
{-# LANGUAGE ExistentialQuantification #-} 
data Control a = forall b. EvalScript (Script b) (b -> a) 

 
As you can see, the b type variable isn't presented in the Control type constructor. No one 
who uses this type will ever know there is an internal type b. To declare that it's internal, we 
write the forall quantificator. Doing so we defined the scope for the b type. It's bounded 
by the EvalScript value constructor (because the forall keyword stays right before it). 
We may use the b type variable inside the value constructor, but it's completely invisible from 
the outside. All it does inside is showing the b type from a script is the same type the 
continuation is awaiting. It doesn't matter what the b type actually is. Anything. All you 
want. It says to the compiler: just put a script and an action of the same type into the 
EvalScript value constructor and don't accept two artifacts of different types. What to do 
with the value the script returns, the action will decide by itself. One more note: this all is 
possible due to the Existential Quantification extension of the Haskell language. 

The complete design of the ControlProgram free language is shown in listing 4.12: 

Listing 4.12: The ControlProgram free eDSL. 

-- Script container, wraps all Free languages 
data Script b = ControllerScript (ControllerScript b) 
              | ComputationScript (ComputationScript b) 
              | InfrastructureScript (InfrastructureScript b) 
              | DataAccessScript (DataAccessScript b) 
 
-- Smart constructors: 
infrastructureScript :: InfrastructureScript b -> Script b 
infrastructureScript = InfrastructureScriptDef 
 
controllerScript :: ControllerScript b -> Script b 
controllerScript = ControllerScriptDef 
 
computationScript :: ComputationScript b -> Script b 
computationScript = ComputationScriptDef 
 
dataAccessScript :: DataAccessScript b -> Script b 
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dataAccessScript = DataAccessScriptDef 
 
-- Top-level eDSL. It should be a Functor 
data Control a = forall b. EvalScript (Script b) (b -> a) 
 
instance Functor Control where 
    fmap f (EvalScript scr g) = EvalScript scr (f . g) 
 
-- Top-level Free language. 
type ControlProgram a = Free Control a 
 
-- Smart constructor 
evalScript :: Script a -> ControlProgram a 
evalScript scr = Free (EvalScript scr Pure) 
 
-- sample script 
unifiedScript :: ControlProgram (CommandResult, Time) 
unifiedScript = do 
    time <- evalScript getTomorrowTimeScript 
    result <- evalScript startBoostersScript 
    return (result, time) 

 
Notice that the smart constructors are added for the Script type 
(infrastructureScript and others). Smart constructors make our life much easier. 

As usual, in the final stage of the Free language development, you create an abstract 
interpreter for the ControlProgram language. Conceptually, the abstract interpreter has 
the same structure: the Interpreter type class and the base function interpret. 

 
class Monad m => Interpreter m where 
    onEvalScript :: Script b -> m b 
 
interpret :: (Monad m, Interpreter m) => ControlProgram a -> m a 
interpret (Pure a) = return a 
interpret (Free (EvalScript s nextF)) = do 
    v <- onEvalScript s 
    interpret (nextF v) 

 
When someone implements the Interpreter class type, he should call interpret 
functions for nested languages. The implementation may look so: 
 

module InterpreterInstance where 
 
import qualified ControllerDSL as C 
import qualified InfrastructureDSL as I 
import qualified DataAccessDSL as DA 
import qualified ComputationDSL as Comp 
 
interpretScript (ControllerScriptDef scr) = C.interpret scr 
interpretScript (InfrastructureScriptDef scr) = I.interpret scr 
interpretScript (ComputationScriptDef scr) = DA.interpret scr 
interpretScript (DataAccessScriptDef scr) = Comp.interpret scr 
instance Interpreter IO where 
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    onEvalScript scr = interpretScript scr 
 
The Control type now has only one field that is a declaration to evaluate one of the scripts 
available, but in the future we can extend it to support, for example, declaration of a reactive 
model for FRP. It’s an interesting possibility, however not that simple.  Stay in touch, we go 
further! 

4.3.5​ Arrows for eDSLs 
Are you tired of learning about complex concepts? Take a break and grab some coffee. Now 
let’s look more closely at the concept of arrows. 

The arrow is just a generalization of the monad, which is just a monoid in the category 
of... oh, forget it. If you have never met functional arrows before, I'll try to give you a little 
background on them, but this will be a light touch, because our goal differs: we would do 
better to form an intuition of when and why the arrowized language is an appropriate domain 
representation than to learn how to grok arrows. For more information, consider consulting 
some external resources; there are many of them for Haskell and Scala. You should be 
motivated to choose an arrowized language when you have: 

▪​ Computations that are like electrical circuits: there are many transforming functions 
(“radio elements”) connected by logical links (“wires”) into one big graph (“circuit”) 

▪​ Time-continuing and time-varying processes, transformations, and calculations that 
depend on the results of one another 

▪​ Computations that should be run by time condition: periodically, once at the given 
time, many times during the given period, and so forth 

▪​ Parallel and distributed computations 
▪​ Computation flow (data flow) with some context or effect. The need for a 

combinatorial language in addition to or instead of a monadic language 
It's not by chance that, being a concept that abstracts a flow of computations, an arrowized 
script is representable as a flow diagram. Like monads, the arrowized computations can 
depend on context that is hidden in the background of an arrow's mechanism and thus 
completely invisible to the developer. It's easy to convert a monadic function f :: a -> m 
b into the arrow arr1 :: MyArrow a b, preserving all the goodness of a monad m during 
arr1 evaluation. This is how the concept of arrows generalizes the concept of monads. And  
even  easier to create an arrow arr2 :: MyArrow b c from just a non-monadic function g 
:: b -> c. This is how the concept of arrows generalizes the function type. 

Finally, when you have two arrows, it's not a big deal to chain them together: 
 
arr1 :: MyArrow a b 
arr1 = makeMonadicArrow f 
 
arr2 :: MyArrow b c 
arr2 = makePureArrow g 
 
arr3 :: MyArrow a c 
arr3 = arr1 >>> arr2 

 
All we should know to compose arrows is their type:  the first arrow converts values of type 
a to values of type b, and the second arrow converts values of type b to values of type c. 
That is, these two arrows both convert values by the scheme (a -> b) -> c. Applied to a 
value of type a, the arrow arr3 will first do f a with monadic effect resulting in a value of 
type m b, and then will evaluate g b resulting in value of type c (or m c. - it depends on the 
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concrete monad you use inside the arrow). In short, if runArrow is application of your arrow 
to an argument, then runArrow arr3 a may be equivalent to this: 
 

apply :: (a -> m b) -> (b -> c) -> m c    -- not escaped from monad 
apply f g a = do 
    b <- f a 
    let c = g b 
    return c 

 
or to this: 
 

apply :: (a -> m b) -> (b -> c) -> c    -- escaped from monad 
apply f g a = 
    let b = runMonad f a 
        c =g b 
    in c 

 
That's how the (>>>) combinator works: it applies the left arrow and then the right one. 
And it's aware of arrow's internals so it may run monad for monadically composed arrow. 
This operation is associative: 
 

arr1 >>> arr2 >>> arr3 
 
To apply an arrow to a value you call a “run” function from a library: 
 

toStringA :: MyArrow Int String 
toStringA = arr show 
 
evaluateScenario = do 
result <- runArrow toStringA 10 
print result 

 
The arr function should be defined for every arrow because it present in the Arrow type 
class (ignore Category type class for now): 
 

class Category a => Arrow a where 
    arr :: (b -> c) -> a b c 
    first :: a b c -> a (b,d) (c,d) 

 
You might have noticed that when looking at arrow types, you often can't conclude whether 
there is a monadic effect or not. For example: what monad is hided under the imaginary 
arrow WillItHangArrow Program Bool? Is there a kind of IO monad? Or maybe the 
State monad is embedded there? You'll never know unless you'll open its source code. Is 
that bad or good? Hard  to say. We went to the next level of abstraction, and we can even 
cipher different effects in one computation flow by switching between different arrows. But 
the purity rule works anyway: if a particular arrow is made with IO inside, you'll be forced to 
run that arrow in the IO monad. 
 

ioActionArrow :: MyIOArrow () () 
ioActionArrow = makeMonadicArrow (\_ -> putStrLn "Hello, World!") 
 
-- Fine: 
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main :: IO () 
main = runMyIOArrow ioActionArrow () 
 
-- Won't compile: 
pureFunction :: Int -> Int 
pureFunction n = runMyIOArrow  ioActionArrow () 

 
The arrows composed only with the sequential combinator (>>>) look quite boring in the 
flow diagram (see figure 4.2). 
 

 

Figure 4.2 Sequential flow diagram. 

Certainly, we aren't limited to sequential composition only. As usual, if we realize our domain 
model can fit into an arrowized language,  we can take advantage of all the combinators the 
arrow library provides. There is a wide range of arrow combinators we may use to make our 
computational networks much more interesting: parallel execution of arrows, splitting the 
flow into several flows and merging several flows into one, looping the computation, and 
conditional evaluation are all supported. 

We'll construct an arrowized interface over the Free languages in the Logic Control 
subsystem so you can add the flow graph to your toolbox for domain modeling. But before 
we do that, consider the mnemonic arrow notation. The arrow arrowA that accepts the 
input value and returns the output value is written as: 

output <- arrowA -< input 
 
Because every arrow is a generalization of a function, it should have input and output, but 
we can always pass the unit value () if the arrow doesn't actually need this: 
 

-- no input, no output: 
() <- setA ("PATH", "/home/user") -< () 

 
If two arrows depend on the same input, they can be run in parallel. Will it be a real 
parallelization or just logical possibility depends on the arrow's mechanism.  You may 
construct an arrow type that will run these two expressions concurrently: 
 

factorial <- factorialA -< n 
fibonacci <- fibonacciA -< n 

 
Arrows can take and return compound results. The most important structure for arrows is a 
pair. It is used in the arrow machinery to split a pair and feed two arrows by own parts of a 
pair (see the split (***) operator below). You may write an arrow that will change only the 
first or the second item of a pair. For example, the following two arrows take either n or m to 
calculate a factorial but leave another value unchanged: 
 

(factorialN, m) <- first  factorialA -< (n, m) 
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(n, factorialM) <- second factorialA -< (n, m) 
 
The combinators first and second should be defined for every arrow, as well as the 
(>>>) combinator and others. The fanout (&&&) combinator makes an arrow from two of 
them, running them in parallel with the input argument cloned. The output will be a pair of 
results from the first and second arrows: 
 

(factorial, fibonacci) <- factorialA &&& fibonacciA -< n 
 
The split (***) combinator behaves like the (&&&) combinator, but takes a pair of inputs 
for each of two arrows it combines: 
 

(factorialN, fibonacciM) <- factorialA *** fibonacciA -< (n, m) 
 
Figure 4.3 illustrates these combinators as input/output boxes. 

 

Figure 4.3 Arrow combinators. 

TIP Some self-descriptiveness can be achieved with a “conveyor belt diagram,” where 
arrows associate with machines and the belt supplies them with values to be processed. 
The tutorial Haskell: /Understanding arrows”  uses this metaphor (see visualization) and 3

gives a broad introduction into arrows. 

4.3.6​ Arrowized eDSL over Free eDSLs 
Let's take the last mnemonic monitoring scenario and reformulate it in the arrowized way. 
Meet the arrow that monitors readings from the thermometer: 
 

Scenario: monitor outside thermometer temperature 
Given: outside thermometer @therm 
Evaluation: once a second, run arrow thermMonitorA(@therm) 
 
arrow thermMonitorA [In: @therm, Out: (@time, @therm, @tempK)] 
    @tempC <- thermTemperatureA -< @therm 
    @tempK <- toKelvinA         -< @tempC 
    @time  <- getTimeA          -< () 
    ()     <- processReadingA   -< (@time, @therm, @tempK) 
    return (@time, @therm, @tempK) 

3​  https://en.wikibooks.org/wiki/Haskell/Understanding_arrows 
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It calls other arrows to make transformations and to call scripts from the Free domain 
languages. The thermTemperatureA arrow reads the temperature: 
 

arrow thermTemperatureA [In: @therm, Out: @tempC] 
    @tempC <- runScriptA -< thermTemperatureS(@therm) 
    return @tempC 

 
Arrows that store readings, validate temperatures, and raise alarms when  problems are 
detected are combined in the processReadingA arrow: 
 

arrow processReadingA [In: (@time, @therm, @tempK),  Out: ()] 
    ()      <- storeReadingA    -< @reading 
    @result <- validateReadingA -< @reading 
    ()      <- alarmOnFailA     -< @result 
    return () 

 
We could define other arrows, but I think it's now obvious how they describe scenarios 
mnemonically. The full computation is better shown by a flow diagram (see figure 4.4). 

 

Figure 4.4 Flow diagram for thermometer monitoring arrow. 

If the mnemonic arrow notation and the computational graph have scared you a little, you 
haven't seen the combinatorial code yet!  There are several ways to compose an arrow for 
the diagram, and one of them - to make the calculation process completely sequential. In the 
following code, many arrows are combined together to transform results from each other 
sequentially: 
 

thermMonitorA = (arr $ \b -> (b, b)) 
                >>> second (thermTemperatureA >>> toKelvinA) 
                >>> (arr $ \x -> ((), x)) 
                >>> first getTimeA 
                >>> (arr $ \(t, (inst, m)) -> (t, inst, m)) 
                >>> (arr $ \b -> (b, b)) 
                >>> second (storeReadingA &&& validateReadingA) 
                >>> second (second alarmOnFailA) 
                >>> (arr $ \(b, _) -> b) 

 
What is the code here? It looks very cryptic, like Perl, or a paragraph from a math paper. This 
is actually valid Haskell code that you may freely skip. It's here for those who want a full set 
of examples, but you may be impressed that Haskell has a nicer proc notation for arrows 
that is very close to the mnemonic notation we have introduced. Before it is introduced, let's 
prepare the arrow type. Suppose we have constructed the FlowArr b c arrow type 
somehow that is able to describe the diagram in figure 4.4. This arrow is specially designed 
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to wrap our free languages and scenarios. It doesn't have any own logic, it only provides an 
arrowized interface to the languages. You may or you may not use it depending on your 
taste. 

As the mnemonic scenario says, the thermMonitorA arrow takes an instance of 
thermometer (let it be of type SensorInstance) and returns a single reading of type 
Reading from it: 

 
thermMonitorA :: FlowArr SensorInstance Reading 
thermMonitorA = proc sensorInst -> do 
    tempK <- toKelvinA <<< thermTemperatureA -< sensorInst 
    time  <- getTimeA -< () 
     
    let reading = (time, sensorInst, tempK) 
     
    ()      <- storeReadingA    -< reading 
    result  <- validateReadingA -< reading 
    ()      <- alarmOnFailA     -< result 
    returnA -< reading 

 
The proc keyword opens a special syntax for arrow definition. The variable sensorInst is 
the input argument. The arrowized do block, which is extended compared to the monadic do 
block, defines the arrow's body. At the end, the returnA function should be called to pass 
the result out. 

TIP To enable the proc notation in a Haskell module, you should set the compiler 
pragma Arrows at the top of the source file: {-# LANGUAGE Arrows #-}. It's 
disabled by default due to nonstandard syntax. 

Here’s the definition of the FlowArr arrow type: 
 

type FlowArr b c = ArrEffFree Control b c 
 
This type denotes an arrow that receives b and returns c. The ArrEffFree type, which we 
specialize by our top-level eDSL type Control, came from the special library I designed for 
the demonstration of the Free Arrow concept. This library has a kind of stream transformer 
arrow wrapping the Free monad. Sounds menacing to our calm, but we won't discuss the 
details here. If you are interested, the little intro in Appendix A is for you. All you need from 
that library now is the runFreeArr. Remember we were speaking about whether you should 
interpret a Free language if you want to run it in a real environment? This is the same for the 
arrowized interface over a Free language. To run arrow, you pass exactly the same 
interpreter to it: 
 

sensorInst = (Controller "boosters", "00:01") 
test = runFreeArr interpret thermMonitorA sensorInst 

 
Here, interpretControlProgram is an interpreting function for the ControlProgram 
language, thermMonitorA is the arrow to run, and sensorInst is the value the arrow is 
awaiting as the input. Running the arrow calls the interpreter for the top-level language, and 
the internal language interpreters will be called from it. We'll omit this code. What we'll see is 
the implementation of combinators. 
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“Run script X” arrows are simple — we just wrap every monadic action with the library 
arrow creator mArr for effective (monadic) functions: 

 
thermTemperatureA :: FlowArr SensorInstance Measurement 
thermTemperatureA = mArr f 
  where 
    f inst :: SensorInstance -> ControlProgram Measurement 
    f inst = evalScript (readSensor Temperature inst) 

 
Thus, f is the monadic function in the ControlProgram monad. It's a composition of two 
functions, the evalScript function and readSensor, the custom function defined like so: 
 

readSensor :: Parameter -> SensorInstance -> Script Measurement 
readSensor parameter (cont, idx) = controllerScript readSensor' 
  where 
      -- The script itself. 
      -- "read" is a smart constructor. 
      readSensor' :: ControllerScript Measurement 
      readSensor' = read cont idx parameter 

 
Figure 4.5 shows the structure of nested scripts. Top blocks are functions, bottom blocks are 
types. 
 

 

Figure 4.5: Scripts nesting. 

The readSensor function puts the script in the ControllerScript monad into an 
intermediate Script container, the form the evalScript function is awaiting as input (see 
listing 4.12): 
 

data Control a = forall b. EvalScript (Script b) (b -> a) 
 
evalScript :: Script a -> ControlProgram a 
evalScript scr = Free (EvalScript scr Pure) 

 
We do the same with the infrastructure script and others: 
 

getTimeA :: FlowArr b Time 
getTimeA = mArr f 
  where 
    f :: b -> ControlProgram Time 
    f _ = evalScript (infrastructureScript getCurrentTime) 
 
storeReadingA :: FlowArr Reading () 
storeReadingA = mArr (evalScript . infrastructureScript . storeReading) 
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And also we convert pure functions to arrows with the library wrapper arr: 
 

validateReadingA :: FlowArr Reading ValidationResult 
validateReadingA = arr validateReading 
 
validateReading :: Reading -> ValidationResult 
validateReading (_, si, Measurement (FloatValue tempK)) = ... 

 
Finally, when the arrowized language is filled with different arrows, we are able to write 
comprehensive scenarios in a combinatorial way — not just with monads! Let's weigh the 
pros and cons. The arrowized eDSL is good for a few reasons: 

▪​ It’s useful for flow diagrams. This is a natural way to express flow scenarios to control 
the ship. 

▪​ It’s highly combinatorial and abstract. As a result, you write less code. You don't even 
need to know what monad is running under the hood. 

However, arrowized eDSLs have disadvantages too: 

▪​ Arrows don't get the consideration they deserve and Free Arrows are not investigated 
properly. This is a cutting-edge field of computer science, and there are not so many 
industrial applications of arrows. 

▪​ They’re harder to create. We made a simple arrowized language over Free languages, 
but the library this language is built upon is complex.  

▪​ Combinators for arrows such as (&&&) or (>>>) may blow your mind. Besides 
combinators, how many languages have a special arrowized syntax? Only Haskell, 
unfortunately. 

Arrows are quite interesting. There are combinators for choice evaluation of arrows for 
looped and recursive flows, which makes arrows an excellent choice for complex calculation 
graphs; for example, mathematical iterative formulas or electrical circuits. Some useful 
applications of arrows include effective arrowized parsers, XML processing tools, and 
functional reactive programming libraries. It’s also important to note that the arrow concept, 
while being a functional idiom, has laws every arrow should obey. We won't enumerate them 
here, so as not to fall into details and to stay on the design level. 

4.4​ External DSLs 
Every SCADA application has to support external scripting. This is one of the main functional 
requirements because SCADA is an environment that should be carefully configured and 
programmed for the particular industrial process. Scripting functionality may include: 

▪​ Compilable scripts in programming languages such as C. You write program code in a 
real language and then load it into a SCADA application directly or compile it into 
pluggable binaries. 

▪​ Pluggable binaries with scripts. After the binaries are plugged into the application, you 
have additional scripts in your toolbox. 

▪​ Interpretable external DSLs. You write scripts using an external scripting language 
provided by the application. You may save your scripts in text files and then load them 
into the application. 

Perhaps, this is the most difficult part of the domain. All industrial SCADA systems are 
supplied with their own scripting language and integrated development environment (IDE) to 
write control code. They can also be powered by such tools as graphical editors, project 
designers, and code analyzers. All of these things are about programming language 
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compilation. Compilers, interpreters, translators, various grammars, parsing, code 
optimization, graph and tree algorithms, type theory, paradigms, memory management, 
code generation, and so on and so forth... This part of computer science is really big and 
hard. 

We certainly don't want to be roped into compilation theory and practice: this book is not 
long enough to discuss even a little part of it! We'll try to stay on top of the design discussion 
and investigate the place and structure of an external eDSL in our application. 

4.4.1​ External DSL structure 
First, we'll fix the requirement: Andromeda software should have an external representation 
of the Logic Control eDSLs with additional programming language possibilities. The internal 
representation, namely, ControlProgram Free eDSL, can be simply used in unit and functional 
tests of subsystems, and the external representation is for real scripts a spaceship will be 
controlled by. We call this external DSL AndromedaScript. The engineer should be able to 
load, save, and run AndromedaScript files. The mapping of eDSLs to AndromedaScript is not 
symmetric: 

▪​ Embedded Logic Control DSLs can be fully translated to AndromedaScript. 
▪​ AndromedaScript can be partially translated into the Logic Control eDSLs. 

AndromedaScript should contain possibilities of common programming languages. This code 
can't be translated to eDSLs because we don't have such notions there: neither Free eDSL of 
Logic Control contains if-then-else blocks, variables, constants, and so on. This part of 
AndromedaScript will be transformed into the intermediate structures and then interpreted 
as desired.  

Table 4.2 describes all the main characteristics of AndromedaScript. 

Table 4.2 Main characteristics of AndromedaScript. 

Characteristic Description 

Semantics AndromedaScript is strict and imperative. Every instruction should be 
defined in a separate line. All variables are immutable. Delimiters 
aren't provided. 

Code blocks Code blocks should be organized by syntactic indentation with 4 
spaces. 

Type system Implicit dynamic type system. Type correctness will be partially 
checked in the translation phase. 

Supported constructions if-then-else, range for loop, procedures and functions, 
immutable variables, custom lightweight algebraic data types. 

Base library Predefined data types, algebraic data types, procedures, mapping to 
the Logic Control eDSLs, mapping to the Hardware eDSLs. 

Versions Irrelevant at the start of the Andromeda project; only a single version is 
supported. Version policy will be reworked in the future when the 
syntax is stabilized. 
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The next big deal is to create a syntax for the language and write code examples. The 
examples can be meaningless, but they should show all the possibilities in pieces. We'll use 
them to test the translator. See the sample code in listing 4.13. 

Listing 4.13 Example of AndromedaScript 

val boosters = Controller ("boosters") 
val start = Command ("start") 
val stop = Command ("stop") 
val success = Right ("OK") 
 
// This procedure uses the ControllerScript possibilities. 
[ControllerScript] BoostersOnOffProgram: 
    val result1 = Run (boosters, start) 
    if (result1 == success) then 
        LogInfo ("boosters start success.") 
        val result2 = Run (boosters, Command ("stop")) 
        if (result2 == success) then 
            LogInfo ("boosters stop success.") 
        else 
            LogError ("boosters stop failed.") 
    else 
        LogError ("boosters start failed.") 
 
// Script entry point. 
// May be absent if it's just a library of scripts. 
Main: 
    LogInfo ("script is started.") 
    BoostersOnOffProgram 
    LogInfo ("script is finished.") 

 
You may notice there is no distinction between predefined value constructors such as 
Controller or Command and procedure calls such as Run. In Haskell, every value 
constructor of algebraic data type is a function that creates a value of this type — it's no 
different from a regular function. Knowing this, we simplify the language syntax by making 
every procedure and function a kind of value constructor. Unlike the Haskell syntax, 
arguments are comma-separated and bracketed, because it's easier to parse. 

What parts should a typical compiler contain? Let's enumerate them: 

▪​ Grammar description. Usually a Backus–Naur Form (BNF) for simple grammars, but it 
can be a syntax diagram or a set of grammar rules over the alphabet. 

▪​ Parser. Code that translates the text of a program into the internal representation, 
usually an abstract syntax tree (AST). Parsing can consist of lexical and syntax 
analysis before the AST creation. The approaches for how to parse a certain language 
highly depend on the properties of its syntax and requirements of the compiler. 

▪​ Translator, compiler, or interpreter. Code that translates one representation of the 
program into another. Translators and compilers use translation rules to manipulate 
abstract syntax trees and intermediate structures. 

The grammar of the AndromedaScript language is context-free, so it can be described by the 
BNF notation. We won't have it as a separate artifact because we'll be using the monadic 
parsing library and thus the BNF will take the form of parser combinators. There is no need 
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to verify the correctness of the BNF description: if the parser works right, then the syntax is 
correct. In our implementation, the parser will read text and translate the code into the AST, 
skipping any intermediate representation. There should be a translator that is able to 
translate a relevant part of the AST into the ControlProgram eDSL and an interpreter 
translator that does the opposite transformation. Why? Because it's our interface to the Logic 
Control subsystem and we assume we have all the machinery that connects the 
ControlProgram eDSL with real hardware and other subsystems. The rest of the 
AndromedaScript code will be evaluated by the AST interpreter. 

The project structure is updated with a new top-level subsystem, 
Andromeda.Language: 

 
Andromeda\ 
    Language                 #A 
    Language\ 
        External\            #B 
            AST              #B 
            Parser           #B 
            Translator       #B 
            Interpreter      #B 

#A Top-level module that reexports modules of the compiler 
#B AST, operational data structures, parsers, and translators of the AndromedaScript language 

 
In the future, the external language will be complemented by the foreign programming 
language C, and we'll place that stuff into the folder Andromeda\Language\Foreign\, near 
Andromeda\Language\External\. 

4.4.2​ Parsing to the abstract syntax tree 
The abstract syntax tree is a form of grammar in hierarchical data structures that is 
convenient for transformations and analysis. We can build the AST from top to bottom by 
taking the entire program code and descending to separate tokens, but it's likely we’ll come 
to a dead end where it's not clear what element should be inside. For example, the main data 
type should contain a list of... what? Procedures? Statements? Declarations? 
 

data Program = Program [???] 
 
The better way to construct the AST is related to the BNF creation, or in our case, the parser 
creation, starting from small parsers and going up to the big ones. The Parsec library already 
has many important combinators. We also need combinators for parsing integer constants, 
string constants, identifiers, end-of-lines, and lists of comma-separated things between 
brackets. Here are some of them: 
 

-- Integer constant parser. Returns Int. 
integerConstant :: Parser Int 
integerConstant = do 
    res <- many1 digit  #A 
    return (read res)   #B 
 
-- Identifier parser: first character is lowercase, 
-- others may be letters, digits, or underscores. 
-- Returns parsed string. 
identifier :: Parser String 
identifier = do 
    c <- lower <|> char '_'   #C 
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    rest <- many (alphaNum <|> char '_') 
    return (c : rest) 

#A Parse one or more digits and put to res 
#B The variable res is a string; the read function converts it to an integer 
#C Parse lowercase letter; if this fails, parse the underscore symbol 

A note about monadic parsing combinators and the Parsec library 
Parsec is great. Suppose you have a log file and you want to parse it: 

10 [err] "Syntax error: unexpected '(' (line 4, column 23)" 

It contains an integer number, severity, and message string, each delimited by one space 
(exactly). The corresponding parser will be: 

logEntry :: LogParser (Int, Severity, String) 
logEntry = do 
    n <- integerConstant 
    space 
    s <- severity 
    space 
    msg <- stringConstant 
    return (n, s, msg) 

This parser calls smaller parsers for constants and for severity. It also consumes and 
throws out the spaces in between. The result is a triple that describes the log entry. The 
severity parser will look like so: 

data Severity = Err | Inf 
 
severity' s = between (char '[') (char ']') (string s) 
errSeverity = severity' "err" >> return Err 
infSeverity = severity' "inf" >> return Inf 
 
severity = errSeverity <|> infSeverity 

Here, the (p1 <|> p2) expression means if p1 fails to parse, the p2 will try. This reads 
as “or”. Let's run the parser against some input string: 

str = "10 [err] \"Syntax error: unexpected '(' (line 4, column 23)\"" 
test = case Parsec.parse severity str of 
    Left e -> print "FAILED" 
    Right (i, s, msg) -> print ("Parsed", i, s, msg) 

The functions between, char, string, (<|>), space, alphaNum, digit, many, 
many1, lower, and upper are standard parsing combinators with the obvious 
meanings. A shapely set of bricks for your mason's imagination! 

 

Having plenty of small general parsers, we build bigger ones—for example, the parser for the 
value constructor entry. This gives us the corresponding algebraic data type: 
 

data Constructor = Constructor String ArgDef 
 
constructorName :: Parser String 
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constructorName = do 
    bigChar <- upper 
    smallChars <- many alphaNum 
    return (bigChar : smallChars) 
 
constructor :: Parser Constructor 
constructor = do 
    name <- constructorName 
    spaces 
    argDef <- argDef 
    return (Constructor name argDef) 

 
And then we have to define the parser and data type argDef. A small test of this concrete 
parser will show if we are doing things right or something is wrong. Parsec has the 
parseTest function for this (or you may write your own): 
 

test :: IO () 
test = do 
    let constructorStr = "Controller(\"boosters\")" 
    parseTest constructor constructorStr 

 
The AST we'll get this way can consist of dozens of algebraic data types with possibly 
recursive definitions. The AndromedaScript AST has more than 20 data types, and this is not 
the limit. Figure 4.6 shows the structure of it. 
 

 

Figure 4.6 The AndromedaScript AST. 

The more diverse your grammar, the deeper your syntax tree. And then you have to deal 
with it during the translation process. That's why Lisp is considered a language without 
syntax: it has only a few basic constructions that will fit into a tiny AST. Indeed, the 
s-expressions are the syntax trees themselves, which makes the transformation much 
simpler. 
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4.4.3​ The translation subsystem 
Although translation theory has more than a half-century history, the methods and tricks it 
suggests are still high science that can require significant adjacent skills and knowledge from 
the developer. We'll talk about the translator, focusing not on how to write one but on how it 
should be organized. Let's treat the translator as a subsystem that is responsible for 
interpreting the AST into evaluable code from one side and into embedded languages from 
the other side. 

The translator is the code that pattern matches over the AST and does the necessary 
transformations while building a result representation of the script being processed. The 
translator has to work with different structures: some of them are predefined and 
immutable; others will be changed during the translation. Immutable data structures include 
symbol tables, number transition rules, and dictionaries. Tables may contain patterns and 
rules of optimization, transitions for state machines, and other useful structures. Mutable 
(operational) data structures include graphs, number generators, symbol tables, and flags 
controlling the process. The state of the translator highly depends on the tasks it's intended 
to solve, but it never is simple. Consequently, we shouldn't make it even more intricate by 
choosing the wrong abstractions. 

There are several ways to make stateful computations in functional programming. From 
chapter 3 we know that if the subsystem has to work with state, the State monad and similar 
are the a good choices, unless we are worried by performance questions. It's very likely we'll 
want to print debug and log messages describing the translation process. The shortest (but 
not the best) path to do that is to make the translator impure. So this subsystem should 
have properties of two monads: State and IO, a frequent combination in Haskell 
applications. We’ll study other options we have to carry the state in the next chapter. 

We define the translation type as the state transformer with the IO monad inside, 
parameterized by the Translator type: 

 
type TranslatorSt a = StateT Translator IO a 

 
The Translator type is an algebraic data type that holds the operational state: 
 

type Table = (String, Map String String) 
type ScriptsTable = Map IdName (Script ()) 
 
data Tables = Tables { 
      _constants :: Table 
    , _values :: Table 
    , _scriptDefs :: ScriptsDefsTable 
    , _sysConstructors :: SysConstructorsTable 
    , _scripts :: ScriptsTable 
} 
 
data Translator = Translator { 
      _tables :: Tables 
    , _controlProg :: ControlProgram () 
    , _scriptTranslation :: Maybe ScriptType 
    , _indentation      :: Int 
    , _printIndentation :: Int 
    , _uniqueNumber     :: Int 
} 
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The state has some management fields (indentation, printIndentation, 
uniqueNumber), tables, and other data. It is organized as nested ADTs. You may notice that 
nesting of data structures unavoidably complicates making changes when they are 
immutable: you need to unroll the structures from the outside in, modify an element, and roll 
them back up. You can mitigate this problem by providing mutation functions, but it becomes 
annoying to support all new data structures this way. Fortunately, there is a better approach, 
known as lenses. You may have heard about lenses or even be using them, but if not, I'll 
give you a very short overview. 

Lenses are a way to generalize working with deep immutable data structures of any kind. 
Lenses are very similar to getters and setters in OOP, but they are combinatorial and do 
many things that getters and setters can't — for example, traversing a container and 
mutating every element inside the container or even deeper.  You describe this operation 
with a few lens combinators and apply it to your container. The rest of the unrolling and 
wrapping of items will be done by the lens library. The following listing shows the idea. 

Listing 4.14 Lenses simple example 

{-# LANGUAGE TemplateHaskell #-} 
import Control.Lens (traverse, makeLenses, set) 
 
data BottomItem = BottomItem { _str :: String } 
data MiddleItem = MiddleItem { _bottomItem :: BottomItem } 
data TopItem    = TopItem    { _middleItem :: MiddleItem } 
 
-- Making lenses with TemplateHaskell: 
makeLenses 'BottomItem 
makeLenses 'MiddleItem 
makeLenses 'TopItem 
 
-- Now you have lenses for all underscored fields. 
-- Lenses have the same names except underscores. 
-- Lenses can be combined following the hierarchy of the types: 
bottomItemLens = traverse.middleItem.bottomItem.str 
 
container = [ TopItem (MiddleItem (BottomItem "ABC")) 
            , TopItem (MiddleItem (BottomItem "CDE"))] 
 
expected = [ TopItem (MiddleItem (BottomItem "XYZ")) 
           , TopItem (MiddleItem (BottomItem "XYZ"))] 
 
container' = set bottomItemLens "XYZ" container 
test = print (expected == container') 

 
Here the set combinator works over any lens irrespective the structure it points to. The 
structure may be a single value lying deeply or a range of values inside any traversable 
container (lists, arrays, trees are the example). The test function will print True because 
we have changed the internals of the container by applying to it the set combinator and the 
lens bottomItemLens, which pointed out what item to change. The definition of a lens 
looks like a chain of accessors to internal structures in the OOP manner, but it's a functional 
composition of smaller lenses that know how to address the particular part of the compound 
structure: 
 

middleItem :: Lens TopItem MiddleItem 
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bottomItem :: Lens MiddleItem BottomItem 
str        :: Lens BottomItem String 
 
(middleItem . bottomItem)       :: Lens TopItem BottomItem 
(middleItem . bottomItem . str) :: Lens TopItem String 
 
traverse . middleItem . bottomItem . str :: Lens [TopItem] String 

 
These small lenses are made by the lens library from named fields of algebraic data types 
prefixed by an underscore. It's the naming convention of Haskell's lens library that indicates 
what lenses we want to build for. Returning to the translator's state, we can see it has many 
fields with underscore prefixes — that is, we'll get a bunch of lenses for these underscored 
fields. 

Both Haskell and Scala have lens libraries with tons of combinators. The common 
operations are: extracting values, mutating values, producing new structures, testing 
matches with predicates, transforming, traversing, and folding container-like structures. 
Almost any operation you can imagine can be replaced by a lens applied to the structure. 
What else is very important is that many of Haskell's lens combinators are designed to work 
inside the State monad: you don't have to store results in the variables, but you mutate 
your state directly (in the sense of the State monad mutation). For example, the translator 
tracks whether the syntactic indentation is correct. For this purpose it has the 
_indentation field, and there are two functions that increase and decrease the value: 

 
incIndentation :: TranslatorSt () 
incIndentation = indentation += 1 
 
decIndentation :: TranslatorSt () 
decIndentation = do 
    assertIndentation (>0) 
    indentation -= 1 
 
assertIndentation :: (Int -> Bool) -> TranslatorSt () 
assertIndentation predicate = do 
    i <- use indentation 
    assert (predicate i) "wrong indentation:" I 

 
Here, indentation is the lens pointing to the _indentation field inside the Translator 
data type. The use combinator reads the value of the lens from the context of the State 
monad. Note how the operators (+=) and (-=) make this code look imperative! Building a 
translator can be really hard. Why not make it less hard by plugging in lenses? l stop here 
studying the translation subsystem. If you want, you can keep going, digging into the code of 
the Andromeda software available on GitHub. 

4.5​ Summary 
What are the reasons to develop domain-specific languages? We want to accomplish goals 
such as the following: 

▪​ Investigate the domain and define its properties, components, and laws. 
▪​ Based on the domain properties, design a set of domain languages in a form that is 

more suitable and natural for expressing user scenarios. 
▪​ Make the code testable. 
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▪​ Follow the Single Responsibility Principle, keeping accidental complexity as low as 
possible. 

In functional programming, it's more natural to design many domain-specific languages to 
model a domain. The myth that this is complicated has come from mainstream languages. 
The truth here is that traditional imperative and object-oriented languages weren't intended 
to be tools for creating DSLs. Neither the syntax nor the philosophy of imperative languages 
is adapted to supporting such a development approach. You can't deny the fact that when 
you program something, you are creating a sort of domain language to solve your problem, 
but when the host language is imperative, it's more likely that your domain language will be 
atomized and dissolved in unnecessary rituals. As a result, you have that domain language, 
but you can't see it; you have to dissipate your attention on many irrelevant things. 

Imagine you wonder what a ball of water looks like, and you mold a lump of wet earth to 
find out. Well, it's spherical and has water inside, but you didn't get an answer to your 
question. You can only really see a ball of water in free fall or in zero gravity. Functional 
programming is like that water ball. Due to its abstractions, a domain can be finely mapped 
to code without any lumps of earth. When nothing obfuscates your domain language, the 
maintenance of it becomes simple and obvious, and the risk of bugs decreases. 

The techniques and patterns for designing domain-specific languages we have discussed 
in this chapter are by no means comprehensive, and our work on the Logic Control 
subsystem is still not complete. The simple, “straightforward” eDSLs we developed first can 
be good, but it seems the monadic ones have more advantages. The Free monad pattern 
helps to build a scenario that we can interpret. In doing so, we separate the logic of a 
domain from the implementation. We also wrapped our Free languages into an arrowized 
interface. With it, we were able to illustrate our scenarios using flow diagrams. 

You may ask why our domain model missed out the requirement to run scripts by time or 
event condition. We could probably model this in an event-driven manner: we run this 
functionality when we catch an event the special subsystem produces in a time interval. But 
this design often blurs the domain model because the time conditional logic lies too far from 
the domain logic, and changing of time conditions can be really hard. Also, we can't really 
interpret the “runnable” code. The second option to do that is to expand the Control eDSL 
with a special language, something like this: 

 
data Control a = forall b. EvalScript (Script b) (b -> a) 
               | forall b. EvalByTime Time (Script b) (b -> a) 
               | forall b. EvalOnEvent Event (Script b) (b -> a) 

 
But introducing such actions immediately makes our eDSL reactive (that is, the actions are 
reactions to events). To be honest, the domain of Logic Control has this property: it's really 
reactive, and we want to write reactive scenarios. But we are trying to invent functional 
reactive programming. Again, we have two options: use existing FRP libraries somehow, or 
continue developing our own with the functionality limited. The first option is inappropriate 
because our scenarios should be interpretable. Consequently, it's necessary to create a 
custom interpretable FRP library. However this will be a bit harder task than we can imagine. 
In further, we’ll see some ways to create reactivity on the base of Software Transactional 
Memory. We’ll leave the question about FRP for future books and materials, because it’s 
really huge. 

 


