2017 - 18 Evidence for SDW Math ESAIL ### 4.6 Problem solving is collaborative and promotes a balance of procedural fluency, conceptual understanding, and mathematical application. | Beginning | <u>Approaching</u> | <u>Meeting</u> | |---|--|---| | Teachers select mathematical word problems/task that lack multiple solutions, entry points, or strategies. Teachers assign tasks without considering student interest or cultural relevance. | Teachers select tasks that require a moderate level of cognitive demand, allowing for multiple solutions, entry points, or strategies. Teachers motivate students' learning of mathematics through opportunities for exploring and solving authentic and relevant problems that are based on their mathematical work within the unit standards. | Teachers select tasks that require a high level of cognitive demand, allowing for multiple solutions, entry points, and strategies. Teachers motivate students' learning of mathematics through opportunities for exploring and solving authentic and relevant problems to construct new mathematical understanding. | | Teachers take control of the problem solving. | Teachers support students in
exploring tasks. | Teachers facilitate students in
exploring tasks without taking over
student thinking. | | Teacher asks clarifying questions and
gives feedback about the correct
answer. | Teachers encourage students to seek
clarification and validation from one
another. | Students/teacher openly seek
clarification and validation from one
another. | | Students are working in groups. | Students are engaged and contribute to the collaborative work | Students are engaged and contribute to the collaborative work, adding their thoughts, strategies, or suggestions for | | Students attempt completion of a math task. | Students show effort in making sense of
tasks by drawing on and making
connections with their prior
understanding and ideas. | improvement. Students persevere in making sense of tasks and are highly engaged and committed to solve the math task. | **Not Observed:** No problem solving tasks/CGI problems in journals, during math workshop, or visible in the environment. # 1.9 Elaborated discussions (verbal and written) around specific learning goals are promoted, and all students' thinking is valued and discussed. | <u>Beginning</u> | <u>Approaching</u> | <u>Meeting</u> | |---|---|---| | Teacher is at the front of the room and dominates the conversation. | Teacher facilitates conversation, by selecting and sequencing student approaches and strategies, encouraging students to ask questions of one another. | Students select and sequence approaches and strategies and carry the conversation themselves. Teacher guides from the periphery of the conversation. Teacher waits for students to clarify thinking of others. | | Teacher is only questioner and the focus is on correctness. Questions serve to keep students listening to teacher. Students give short answers and respond directly to the teacher. | Teacher asks probing questions and facilitates some student-to-student talk. Students ask questions of one another and utilize oracy strategies with prompting from teacher. | Student-to-student talk is student
initiated. Students ask questions, employ
oracy strategies, listen to responses and
give feedback. Many questions ask
"why" and call for justification. Teacher
questions may still guide discourse. | | One or two strategies may be elicited. Teacher may fill in an explanation. Students provide brief descriptions of their thinking in response to teacher probing. | Teacher probes more deeply to learn
about student thinking, eliciting
multiple strategies. Students respond
to teacher probing and volunteer their
thinking, beginning to defend their
answers. | Teacher follows student explanations
closely. Teacher asks students to
contrast strategies. Students defend and
justify their answers with little prompting
from the teacher. | | Teacher shows math representations to the students or students are learning to create math drawings and/or written explanations to depict their mathematical thinking. | Students show varied representations
and label their math drawings and/or
written justification so that others are
able to follow their mathematical
thinking. | Students follow and help shape the
descriptions of others' math thinking
through math drawings and written
defenses and may suggest edits in
others' math drawings. | Not Observed: Students are all working individually (assessment/technology) - no evidence in math journal or in the environment # 4.3 Daily small guided group lessons and/or conferring are designed to meet the instructional needs of diverse learners. | <u>Beginning</u> | <u>Approaching</u> | <u>Meeting</u> | |--|--|---| | Teachers meet with small guided groups. There is no evidence of a plan for guided group. | Teachers meet with a small guided group based on levels of skills/needs. There is evidence of a lesson plan for the guided group. | Teachers meet with several small guided groups based on assessments/ observations /etc. to determine levels of skills/needs. Teachers have pre-planned lessons based on teacher observations, grade level continuum, and student assessments. | | Teachers check in with students but
there is no established
schedule/routine for conferring. | Teachers confer with students around
their mathematics inconsistently
following a routine/schedule. | Teachers confer with students around the mathematics following a schedule/routine. | | All guided groups complete the same activities with no differentiation. | Small guided groups and conferences
are teacher directed and controlled
allowing for some student voice. | In conferences and guided groups,
teacher is an active listener and
strategically prompts students to make
meaning of the math. | | Teachers do not take anecdotal
notes during groups and/or
conferring. | Teacher takes notes during guided
groups and/or conferring without an
established system. | Teachers keep anecdotal records to
monitor progress and inform instruction in
an organized and established system. | | Materials are not accessible to students. | Teachers have materials out for
students to use. | Teachers' and students' materials are organized and easily accessible. | **Not Observed:** Math Workshop opening, mini lesson, reflection, etc. are happening and guided groups/conferring is not appropriate during the time of the ESAIL. # 4.8 Technology is used to help students learn and make sense of mathematical ideas, reason mathematically, and communicate their mathematical thinking. | <u>Beginning</u> | <u>Approaching</u> | <u>Meeting</u> | |---|--|---| | Teachers/students using technology
(SmartBoard, document camera,
iPads) during math workshop to share
student work. Students are using technology to
practice rote skills. | Teacher use technology to support the augmentation level of SAMR. Technology is used to make meaning of the mathematics (for example - DreamBox/TenMarks) Students understand the purpose for the work to be completed using technology to share their thinking. | Teachers incorporate modification and redefinition of SAMR through the technology use to encourage higher level thinking. Teachers use data from TenMarks/DreamBox to inform next steps in instruction. Students understand the purpose of their work and choose appropriate technology to create their learning. | Not Observed: Technology is not being used for instruction by the teacher and/or students.