XKM3/1 02.02.2023 ОП.04 Метрология, стандартизация и подтверждение соответствия

Тема 2.1 Взаимозаменяемость деталей, узлов и механизмов

План

- 1. Структурная модель детали
- 2.Основные понятия о взаимозаменяемости деталей узлов и механизмов
 - 3.Понятия о точности и погрешности размера
 - 4. Размеры, предельные отклонения, допуски и посадки
- 5.Взаимозаменяемость деталей по форме и взаимному расположению поверхностей
 - 6.Волнистость и шероховатость поверхности

Основная литература

- 1. Зайцев С.А. Метрология, стандартизация и сертификация в машиностроении / Зайцев С.А., Толстов А.Н. Грибанов Д.Д., Куранов А.Д.: учебник для СПО.- 3-е издание. М: Издательский центр Академия, 2019.-288с.
- 2. Иванов И.А., Урушев С.В., Воробьев А.А., Кононов Д.П. Метрология, стандартизация и сертификация на транспорте: учебник для СПО.-: Издательский центр «Академия», 2017.-336с.
- 3. Ильяков А.И.Метрология, стандартизация и сертификация в машиностроении/ Ильяков А.И., Марсов Н.Ю., Гутюм Л.В.: Практикум: учебное пособие для студентов Учреждений СПО.- М: Издательский центр Академия,2017,-160с.

Дополнительная литература

- 1. Никифоров Метрология, стандартизация и сертификация: учебное пособие 3-е изд.испр.-М: Высшая школа, 2010.-422с;
- 2. Сергеев А.Г. Метрология, стандартизация и сертификация учебник M: Издательский центр академия, 2010.-384c.
 - 3. ГОСТ 16263-70 ГСИ. Метрология. Термины и определения.
 - 4. ГОСТ 4.93-83. Система показателей качества продукции.
 - 5. ГОСТ 15467-79. Управление качеством продукции.

Интернет-ресурсы

- 1. Csm-vrrn.ru
- 2. Gost.ru-
- 3.Электронный учебник de.ifmo.ru

3. Понятия о точности и погрешности размера

Точность в технике — это степень приближения истинного значения рассматриваемого параметра процесса или объекта к **его** заданному значению. Качество машин, их надежность и долговечность зависят в значительной мере от точности обработки деталей при изготовлении. Совершенствование и усложнение конструкций автомобилей, станков и других машин, увеличение рабочих скоростей и нагрузок требуют все более высокого качества деталей и точности обработки.

При проектировании конструктор определяет номинальные размеры и форму каждой детали, которые обеспечивают необходимые эксплуатационные характеристики соединений деталей и в конечном счете — механизма или машины в целом. Однако при изготовлении деталей под влиянием многочисленных факторов, проявляющихся в процессе обработки, возникают отклонения от заданных размеров и формы.

Точность обработки часто бывает неодинаковой даже в пределах одной поверхности (в разных сечениях и точках).

Степень соответствия действительных размеров геометрическим параметрам, заданным чертежом, принято называть *точностью обработки*. Под *погрешностью обработки* понимают разность между приближенным и точным значениями некоторой величины.

При употреблении термина «точность» обычно имеют в виду качественный показатель, характеризующий отличие полученного значения параметра от заданного. Термин «погрешность» применяется для количественной оценки точности.

Для оценки точности обработки деталей принято следовать укрупненной классификации отклонений геометрических параметров:

- -отклонения размера;
- -отклонения расположения поверхностей;
- -отклонения формы;
- -волнистости поверхности;
- -шероховатости поверхности.

Многочисленные факторы, влияющие на точность обработки, постоянно изменяются в процессе изготовления деталей.

Точность элементов станка и их взаимное расположение (биение шпинделя, отклонения от прямолинейности направляющих станины и суппорта, отклонения от параллельности и перпендикулярности перемещений суппорта относительно осей шпинделя, несовпадение оси центров передней и задней бабок и т.п.) влияет на точность размеров, формы и взаимного положения обрабатываемых поверхностей.

Особое значение имеет *точность* элементов приспособлений, предназначенных для установки обрабатываемой детали и определения положения режущего инструмента.

Существенное влияние на точность обработки оказывает *точность мерного инструмента* (сверла, развертки, метчики и т.п.) и *профильного*

(фасонного) инструмента (резцы, фрезы и т.п.), гак как точность их изготовления непосредственно влияет на форму и размер обрабатываемой поверхности.

Еще одним фактором, влияющим на точность обработки деталей любым режущим инструментом, является *износ* его *режущей части*.

Погрешность установки инструмента чаще всего называют *погрешностью* его *настройки на размер*. Она возникает при первоначальной установке режущего инструмента или его замене.

Деформации элементов станка, приспособления и инструмента возникают под действием сил резания в процессе обработки. Величины этих деформаций определяются *жесткостью системы станок* — *приспособление* — *инструмент* — *заготовка* и зависят в основном от конструкции станка и качества его изготовления.

Погрешность обработки может возникать в результате действия сил зажима *нежестких деталей* (тонкостенные цилиндры, длинные валы, кольца и т.п.) при их закреплении и сил резания при обработке, а также перераспределения остаточных напряжений.

Деталь, поступившая на определенную операцию, имеет погрешность, предшествующих возникшую операциях заготовительных, промежуточных ИЛИ финишных. Она влияет на точность обработки, наследственной достигаемую на данной операции, называется И погрешностью.

Температура отдельных частей станка, приспособления, инструмента и заготовки в процессе обработки изменяется неодинаково. Материалы, из которых они изготовлены, имеют разные коэффициенты линейного расширения. В результате первоначальное взаимное положение поверхностей изменяется, что является причиной появления погрешностей.

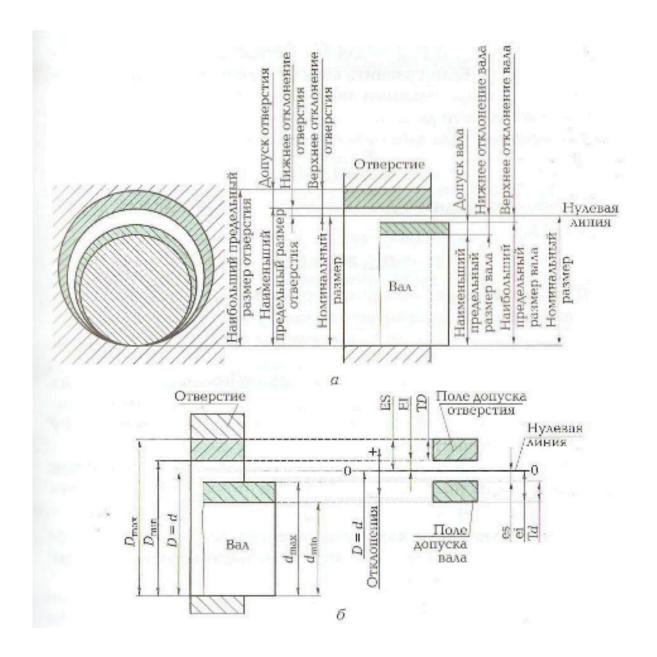
Погрешности, возникающие при изготовлении и настройке средств измерения, а также под влиянием других факторов, не позволяют определить истинные значения размеров, полученных при обработке, и вынуждают пользоваться действительными размерами.

Указанные причины непостоянны во времени. Они вызывают разные по величине отклонения геометрических параметров приобработке партии деталей. В результате их действительные размеры отличаются друг от друга — происходит так называемое *рассеяние размеров*.

4. Размеры, предельные отклонения, допуски и посадки

Основные термины и определения установлены ГОСТ 25346— 89 «Основные нормы взаимозаменяемости. ЕСДП. Общие положения, ряды допусков и основных отклонений».

Все размеры подразделяют на номинальные, действительные и предельные.


Номинальный размер служит началом отсчета отклонений. Относительно него определяют предельные размеры. Номинальный размер выбирают в соответствии с результатами расчета деталей при их проектировании ИЛИ из конструктивных, технологических исходя эксплуатационных факторов. Для деталей, входящих соединение, В номинальный размер является общим.

С целью сокращения числа типоразмеров заготовок и деталей, режущего и измерительного инструмента, а также облегчения типизации технологических процессов значения размеров, полученные при расчете, округляют, как правило, в большую сторону в соответствии со значениями нормальных линейных размеров по ГОСТ 6636 — 69 «Нормальные линейные размеры».

В данном стандарте представлены четыре ряда ($\it Ra5$, $\it Ra10$, $\it Ra20$ и $\it Ra40$), устанавливающих нормальные линейные размеры от 0,001 до 20 000 мм. Так, для ряда $\it Ra5$ предусмотрены нормальные размеры 1,0; 1,6; 2,5; 4,0; 6,0, 10,0 и т.д., для ряда $\it Ra10$ — 1,0; 1,2; 1,6; 2,0; 2,5; 3,0; 4,0; 5,0; 6,0; 8,0; 10,0 и т.д., а для ряда $\it Ra20$ — 1,0; 1,1; 1,2; 1,4; 1,6; 1,8; 2,0 и т.д.

Во всех случаях необходимо стремиться применять одно из основных предпочтительных чисел, указанных в стандарте. При округлении размеров следует отдавать предпочтение значениям рядов Ra5, Ra10 и Ka20 перед значениями рядов Ra10, Ra20 и Ra40соответственно.

Указанный стандарт не распространяется на производные размеры, зависящие от принятых исходных размеров и параметров, в том числе на технологические межоперационные размеры, а также размеры, регламентированные в стандартах на конкретные изделия (например, средний диаметр резьбы).

a — понятие о размерах, отклонениях и допусках; δ — графическое изображение размеров, предельных отклонений, допусков и посадки

Рисунок 2.7-Размеры, отклонения, допуски и посадки

Действительный размер - это размер, установленный при измерении с допустимой погрешностью. Изготовить деталь с абсолютно точными размерами и измерить без учета погрешностей практически невозможно, поэтому и введено это понятие.

Предельные размеры — два предельно допустимых размера, между которыми должен находиться или которым может быть равен действительный размер годной детали (рис. 2.7, а). Больший из них называется **наибольшим предельным размером,** а меньший - **наименьшим предельным размером.** Эти размеры принято обозначать D_{max} и D_{min} — для отверстий, d_{max} и $< d_{\text{min}}$ — для валов (рис. 2.7, б). Если сравнить величину действительного размера ($d_{\text{д}}$, $D_{\text{л}}$) с его предельными значениями, то можно сделать заключение о годности

детали.

Так, если для вала выполняется условие

$$d_{\text{max}} d_{\text{M}} d_{\text{min}}$$

то он считается годным. Для отверстия условие годности детали имеет вид

$$D_{\text{max}} D_{\text{d}} D_{\text{min}}$$

Проходной предел — термин, применяемый к одному из предельных размеров, который соответствует максимальному количеству материала, т. е. верхнему пределу для вала или нижнему пределу для отверстия (рис. 2.8, a).

Непроходной предел — термин, применяемый к одному из предельных размеров, который соответствует минимальному количеству материала, т. е. нижнему пределу для вала или верхнему пределу для отверстия (рис. 2.8, б).

В соответствии с ГОСТ 25346—89 для упрощения чертежей введены понятия предельных отклонений от номинального размера (см. рис. 2.7, б):

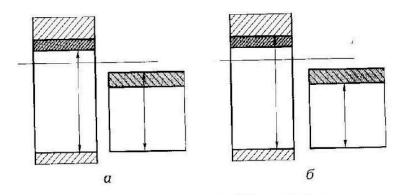


Рисунок 2.8-Проходной (а) и непроходной (б) пределы

-верхнее предельное отклонение (ES,es)— алгебраическая разность между наибольшим предельным и номинальным размерами:

ES=
$$D_{\text{max}}$$
- D , es= d_{max} - d ;

-нижнее предельное отклонение (EI, ei) — алгебраическая разность между наименьшим предельным и номинальным размерами:

EI=
$$D_{\min}$$
- D , ei = d_{\min} - d ;

-действительное отклонение — алгебраическая разность между действительным и номинальным размерами.

Отклонения могут быть положительными, если предельный или действительный размер больше номинального, и отрицательными, если предельный или действительный размер меньше номинального.

На конструкторских и технологических чертежах номинальные и предельные размеры, а также их отклонения согласно ГОСТ 2.307—68 «ЕСКД. Нанесение размеров и предельных отклонений» указывают в миллиметрах без обозначения единицы (например, $85^{-0.013}$ -0.034; $42^{-0.013}$ -0.024; $50^{+0.025}$ -0.034; $50^{-0.022}$).

Угловые размеры и их предельные отклонения выражают в градусах, минутах или секундах с указанием единицы (например, 30°15'40").

При равенстве абсолютных значений отклонений они указывается один раз со знаком « \pm » рядом с номинальным размером (например, $85\pm$ 0,02; $90\pm$ 5).

Отклонение, равное нулю, на чертежах не проставляется. Наносят только одно отклонение: положительное — на месте верхнего предельного отклонения, а отрицательное — на месте нижнего предельного отклонения (например, $60_{-0.022}$; $89^{+0.02}$).

Одним из основных понятий, определяющих точность изготовления деталей, является *допуск*. Допуском **Т** называют разность между наибольшим и наименьшим допустимыми значениями параметра.

Если говорят о допуске размера, то под этим понимают разности, между наибольшим и наименьшим предельными размерами или абсолютное значение алгебраической разности между верхним и нижним предельными отклонениями (см. рис. 2.7, δ):

$$TD = D_{\text{max}} - D_{\text{min}} = [ES - EI]$$

 $Td = d_{\text{max}} - d_{\text{min}} = [es - ei]$

Допуск — всегда положительная величина. От величины допуска во многом зависит качество деталей и стоимость их изготовления. С увеличением допуска качество деталей, как правило, снижается, а стоимость изготовления уменьшается.

На рис. 2.7, **б** (левая часть) представлено условное изображение отверстия и вала. Заштрихованная зона между наибольшим и наименьшим предельными размерами является допуском. Такая схема хотя и достаточно наглядна, но трудновыполнима в масштабе, поскольку разница между значениями номинального размера, отклонений и допусков очень большая. Поэтому применяется графическое изображение допусков и предельных отклонений в виде поля допуска (правая часть рис. 2.7, **б).**

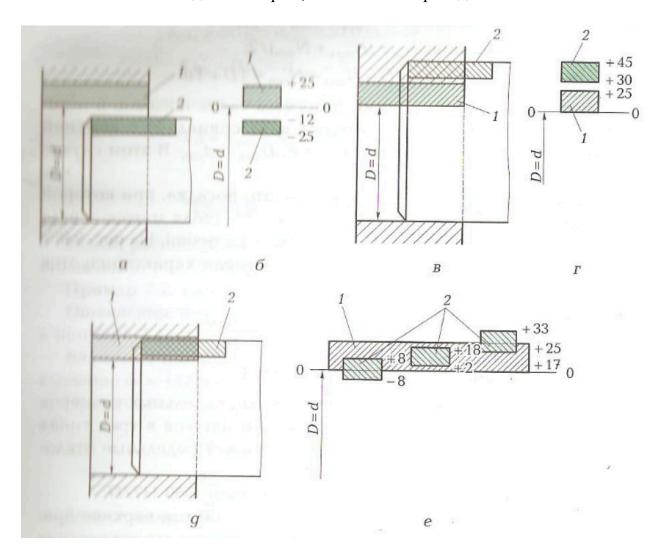
Поле допуска — это поле, ограниченное верхним и нижним предельными отклонениями относительно номинального размера — нулевой линии.

Нулевая линия — это линия, соответствующая номинальному размеру, от которой откладывают отклонения размеров при графическом изображении допусков и посадок. Как правило, нулевая линия располагается горизонтально, и положительные отклонения откладывают относительно нее вверх, а отрицательные — вниз.

Введены понятия «основной вал» и «основное отверстие»:

- -*основной вал* это вал, верхнее предельное отклонение которого равно нулю (es = 0);
- -*основное отверстие* это отверстие, нижнее предельное отклонение которого равно нулю (EI= 0).

Допуск размеров охватывающих поверхностей принято сокращенно называть допуском отверстия и обозначать TD, а охватываемых поверхностей — допуском вала с условным обозначением Td.


Когда говорят о деталях, находящихся в соединении, применяют

термин «посадка». *Посадкой* называется характер соединения деталей одинакового номинального размера, определяемый величиной получающихся в нем зазоров или натягов. Посадка характеризует свободу относительного перемещения деталей в соединении или степень сопротивления их взаимному перемещению.

Зазор S— разность размеров отверстия и вала, если размеры вала меньше размеров отверстия. Соединение с зазором допускает перемещение деталей относительно друг друга.

Намяг N — разность размеров вала и отверстия до сборки соединения, если размер вала больше размера отверстия. Соединение с натягом обеспечивает взаимную неподвижность деталей после их сборки.

Различают посадки с зазором, с натягом и переходные.

a – посадка с зазором; δ – графическое изображение посадки с зазором;

e – посадка с натягом; e – графическое изображение посадок с натягом;

 ∂ — переходная посадка; е — графическое изображение переходных посадок; 1 — поле допуска отверстия; 2 — поле допуска вала

Рисунок 2.9-Типы посадок и их графическое изображение

Посадка с зазором (рис. 2.9, а) — это посадка, при которой зазор в

соединении обеспечивается за счет разности размеров отверстия и вала. На рис. 2.9, δ показана схема посадки с зазором.

Поле I допуска отверстия располагается над полем 2 допуска вала, и в любом случае в данном соединении размеры вала будут меньшеразмеров отверстия.

Посадка с зазором характеризуется следующими основными параметрами:

```
-наибольшим зазором S_{max} = D_{max} - d_{min};
```

-наименьшим зазором $S_{\min} = D_{\min} - d_{\max}$;

-средним зазором $S_m = (S_{max} + S_{min})/2$;

-допуском посадки $TS = S_{max} - S_{min} = TD + Td$.

К посадкам с зазором относятся и такие посадки, в которых нижняя граница поля допуска отверстия совпадает с верхней границей поля допуска вала, т. е. $D_{\min} = d_{\max}$ В этом случае $S_{\min} = 0$.

Посадка с натягом (рис. 2.9, ϵ) — это посадка, при которой натяг в соединении обеспечивается за счет разности размеров вала и отверстия. На рис. 2.9, ϵ показана посадка с натягом. Поле ϵ допуска отверстия располагается под полем ϵ допуска вала, и в любом случае в данном соединении размеры вала будут больше размеров отверстия.

Основными параметрами посадки с натягом являются:

```
-наибольший натягN_{\text{max}} = d_{\text{max}} - D_{\text{min}};
```

-наименьший натяг $N_{\min} = d_{\min} - D_{\max}$;

-средний натяг $N_{\rm m} = (N_{\rm max} + N_{\rm min})/2;$

-допуск посадки TN= N_{max} - N_{min} = TD+Td.

К посадкам с натягом также относятся такие посадки, в которых нижняя граница поля допуска вала совпадает с верхней границей поля допуска отверстия, т. е. $D_{\text{max}} = d_{\text{min}}$. В этом случае $N_{\text{min}} = 0$.

Переходная посадка (рис. 2.9, д)— это посадка, при которой возможно получение как зазора, так и натяга (поля допусков вала и отверстия перекрываются полностью или частично). На рисунке 2.9,е показана схема переходной посадки, которая характеризуется следующими основными параметрами:

- -наибольшим зазором $S_{max} = D_{max} d_{min}$;
- -наибольшим натягом $N_{\max} = d_{\max} D_{\min}$
- -допуском посадки TS(N) = TD + Td.

Таблица 2.1. Условные знаки, используемые для обозначения допусков формы и расположения поверхностей

Группа	Допуск	Знак
Допуски формы	Прямолинейности	-
	Плоскостности	
	Круглости	0
	Цилиндричности	D
	Профиля продольного сечения	=
Допуски расположения	Параллельности	11

Таблица 2.2. Примеры условных обозначений допусков формы и расположения

Элемент условного обозначения	Пример условного обозначения	Пояснение
Нормируемый участок	Z 0,1	Допуск относится ко всей поверхности (длине) элемента
	0,02/100	Допуск относится к любому участку поверхности (элемента), имеющему заданную длину (или площадь)
	10 20	Допуск относится к нор- мируемому участку, рас- положенному в опреде- ленном месте (участок обозначают штрихпун- ктирной линией и указы- вают размер)
База	0,1	Знак базы — зачернен- ный равносторонний треугольник с высотой, равной размеру шрифта чисел
	A 	Если соединение рамки, имеющей обозначение допуска с базой, неудобно, то базу обозначают прописной буквой и ука-

зывают ее в третьем поле