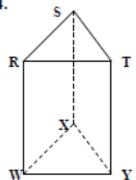

Parallel Lines and Transversals

Parallel lines are coplanar lines that never intersect, even if they are extended indefinitely. The fact that two lines do not intersect does *not* mean they are parallel. Consider the figure below.

The symbol \parallel is used to indicate parallel lines. For example, $\overrightarrow{AF} \parallel \overrightarrow{BG}$. Look closely. \overrightarrow{AF} will also never intersect \overrightarrow{CB} , but these two lines are not parallel because they are not coplanar. Noncoplanar lines that never intersect are called skew lines.

Likewise, planes can be parallel to each other, just like the floor of a room is parallel to the ceiling. In the figure above, plane ABC is parallel to plane FGH; plane CBG is parallel to plane DAF; and plane DCH is parallel to plane ABG.

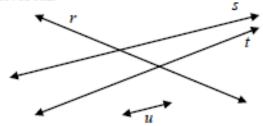


In the figure above, line l is intersecting both line j and line k. Line l is a transversal, a line that intersects two or more other lines. By intersecting lines j and k, the transversal forms eight angles.

Exterior angles	Angles that are on the outside of the	∠1, ∠3,
	intersecting lines	∠6, ∠8
Interior angles	Angles that are on the	∠2, ∠4,
	inside of the intersecting lines	Z5, Z7
Corresponding angles	A pair of angles that is	∠1 and ∠5
	in the same position from one line to the	∠2 and ∠6
	other	∠3 and ∠7
	ould	∠4 and ∠8
Alternate exterior	Pairs of exterior angles	∠1 and ∠8
angles	that are on <i>opposite</i> sides of the transversal	∠3 and ∠6
Alternate interior	Pairs of interior angles	∠2 and ∠7
angles	that are on <i>opposite</i> sides of the transversal	∠4 and ∠5
Consecutive interior	Pairs of interior angles	∠2 and ∠5
angles	that are on the same side of the transversal	$\angle 4$ and $\angle 7$

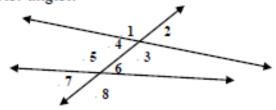
Practice

Use the figure below to answer

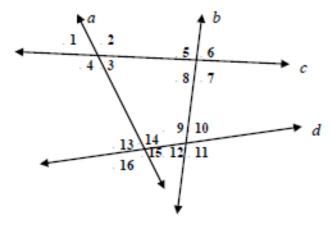


1. Name all segments parallel to \overline{TY} .

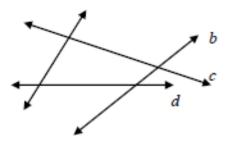
Name a pair of parallel planes.


 Name all planes intersecting plane WXY

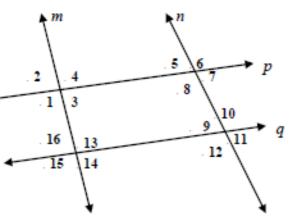
 Name all segments skew to RW. Example 1: Identify the pair lines to which line r is a transversal.


Line r is transversal to s and t; t and u, and s and u. (Remember to consider the fully extended form of the line when identifying transversals and intersections!)

Example 2: Identify each pair of angles as alternate interior, alternate exterior, corresponding, or consecutive interior angles.


- a) ∠1 and ∠8 alternate exterior angles
- b) ∠3 and ∠6 consecutive interior angles
- c) ∠4 and ∠6 alternate interior angles
- d) ∠2 and ∠6 corresponding angles

Example 3: Name the transversal that forms each pair of angles. Then identify the special name for the angle pair.


- a) ∠14 and ∠12
- line d; alt. interior
- b) ∠6 and ∠10
- line b; corresponding

Identify the pairs lines to which each given line is a transversal.

- a
- b
- c
- d

Name the transversal that forms each pair of angles. Then identify the special name for the angle pair.

- 9. ∠7 and ∠11
- ∠3 and ∠13
- ∠2 and ∠14
- 12. ∠6 and ∠12