Matthew’s thoughts:

First step should be to check everyone’s aligned on the problem, which from my pov is:
e Provide a replacement to GCM/FCM/APNS for notifying clients when they have
notifications (and only notifications)

There are some questions around this though:

e Should the notification be 1-bit of data to wake up the client to ask it to call the /sync
CS API, or should it contain more data?

o Currently we send a single wakeup bit via APNS & GCM because we don’t
trust Apple & Google with message data or metadata

m However, if we’re running or selecting our own push server, we don’t
care so much about that level of paranoia.

o Also, we send a single wakeup bit because if we sent an E2E payload we
sometimes have to wake up the client anyway in order to sync with the server
to establish the E2E state required to decrypt it and display the notification.

m However, we could improve efficiency for the common case by
sending the E2E payload and having the client only wake up and call
/sync if it needs to.

o => therefore, we should consider sending event payloads to clients again
rather than just a wakeup bit.

e Should this be an entirely different protocol to Matrix (optimised for push), or should it
just be an alternative transport for Matrix itself (which we happen to use for syncing
notifications)? For an example of an alternative Matrix transport (albeit not one
optimised for push), take a look at the WebSocket proposal at
https://github.com/matrix-org/matrix-doc/blob/master/drafts/websockets.rst

o The advantage of being an entirely different protocol optimised for push is that
you don’t need to worry about it being a subset of the Matrix CS API, which
simplifies the solution a bit, and can potentially directly reuse a simpler
existing protocol like MQTT.

m Matrix’'s CS API doesn’t currently have a filter which says “only send
me events which are push notifications”, although this would be quite
easy to add. It would be critical to add, otherwise we’'d waste
bandwidth on irrelevant Matrix traffic and activity.

o The advantages of it being an alternative transport for Matrix itself are:

m You get E2E encryption for the push notifs “for free”.

m  We wouldn’t need to have a hybrid solution where the push client
wakes up the matrix client in order to ask it to /sync, as the push
would go straight to the Matrix client - and the matrix client could
immediately pull in whatever other info was needed to decrypt and
display the message as a notification.

m The push client would effectively be a Matrix client available to the
whole OS, and could also (in future!) supply other Matrix capabilities
to the OS - e.g. managing E2E encryption state; or even storing



https://github.com/matrix-org/matrix-doc/blob/master/drafts/websockets.rst

searchable logs of local conversation history; or providing a simple OS
API for apps to send/receive messages without having to
independently talk to Matrix servers.
m  Anyone who uses the protocol for push automagically gets all the
benefits of Matrix too
m  We can piggyback on the existing network of deployed matrix
homeservers, rather than requiring folks deploy and maintain yet
another server.
m  We could then use it as a general purpose network-efficient transport
for Matrix across all clients, and not just for Push.
we’d need to add a ‘only send me push notifications’ filter to the Matrix CS
API, so that when using the transport purely for push, we don’'t waste
bandwidth with anything other than notification events. This would be very
straightforward though - a simple extension to the existing Filter API.
=> my preference would be to first investigate whether it's possible to build
this as an alternative Matrix transport, and only fall back to a push-only
transport if this proves too hard.

Then, next step is probably to research various different transports to see what’s actually any
good in terms of bandwidth, battery usage, latency, and resilience to unreliable networking
(i.e. constantly switching between wifi & GSM or dropping in & out of GSM). It’s critical to
consider the transport quality quantitatively in order to make an informed comparison. | also
strongly suggest entirely decoupling the question of the encoding used for the data from the
transport used to transport that data.

How many round-trips (and bytes) does it take to set up the transport?

How many round-trips (and bytes) does it take to send a notification?

What is the average and spread of latency it takes to send a notification (ignoring
network RTT)? (e.g. is it an average of 30s with std deviation of 15s (as you might
see if it were polling every 30s), or is it negligible (if it's a long poll or event stream)?
How much bandwidth does it use to keep the connection established to the server?
Does it take into account the energy usage of the physical layer? This is obviously
easier said than done, but some protocols (specifically GCM and APNS) *do* try to
get this right.

o

For instance, Android phones on HSDPA typically fire up their radio for 2-3s at
a time (at least last time | checked, around the Galaxy S4 era), and the radio
being enabled and transmitting is by far the largest source of battery use
(next to the screen). So you want to avoid doing any background task which
uses the radio for more than 4s at a time, and to batch up as much as
possible within that window. And if the radio is already running due to another
app using data, one should always try to take advantage of it to try to check
for data, and so avoid being the one responsible for firing up the radio to
check.

Similarly, cell towers have configurable timeouts they use when pushing data
to phones at different priorities, and | believe it might be possible to tune your
network stack to match the timeouts in order to be maximally network



efficient. | can’t remember the details, but apparently GCM does this; need to
research how that happens.

The sort of transports and encodings worth looking at (off my top of my head) are:

Transports:

APNS and GCM/FCM. Given the goal here is to replace them, we should first
understand how they work. Hopefully someone else has done most of the work here.
MQTT

MQTT-SN?

COAP

HTTP/2 with server push

Probably not WebSockets, which is obsolete as of HTTP/2

| suggest we deliberately do not try to create a whole new TCP/UDP/QUIC transport,
as it's almost certainly reinventing the wheel that one of the transports above has
fixed already, and it's Hard. That said, it might be worth looking a bit at whether
QUIC to see if they’'ve thought about this.

Next step: worry about encodings. These are less important than the transport given they
are layered on top, although given some transports only support certain encodings (e.g.
COAP+CBOR) it all becomes a bit interdependent.

Again, this *has* to be quantified otherwise you’re running blind.

How much CPU does it take to receive 1000 matrix events?

How much bandwidth does 1000 matrix events consume?

Does it compress well (assuming it's not already compressed)?

Does it factor out commonality between consecutive events? (like HTTP/2 avoids
resending the same headers in each response if they haven’t changed)

Encodings:

protobufs? (e.g. HTTP/2 + protobuf, aka gRPC)

CBOR? (e.g. COAP + CBOR)

cap’n proto?

Thrift?

JSON-B? (I know Phil Hallam-Baker, who invented JSON-B, so could ask him
questions directly if needed)

some other binary JSON representation? BSON? BJSON? UBSON?
MsgPack?

| suggest we deliberately do not try to invent our own encoding and reinvent the
wheel.

https://chadaustin.me/2017/06/ijson-never-dies-an-efficient-queryable-binary-encodina/ looks

like an interesting set of prior work on this.


https://chadaustin.me/2017/06/json-never-dies-an-efficient-queryable-binary-encoding/

Suggested Plan From Dave

Compare efficiency of transports & encodings in Matthew’s list above (not necessarily
all of them - some might be ruled out for other reasons) (see Matthew’s bullets in
choosing transports).

Pick a transport

Implement proxy that syncs from homeserver over HTTP client/server APl and sends
events down to the client in the more efficient transport. This will introduce an extra
step on the path the notification takes, but should be easier than adding a transport
to synapse itself and will also be re-usable for Dendrite.

Do a spec proposal for, and implement a ‘notify’ filter in synapse which filters the
stream to only events that would be sent via push.

Implement receiver on Android



	Matthew’s thoughts: 
	Suggested Plan From Dave 

