
NEW DOCUMENTATION IS AVAIALBLE
HERE

https://forrgit.gitbook.io/advanced-third-person-camera

Advanced Third Person Camera
ATPCCameraComponent

The main component of the plugin is UATPCCameraComponent. It controls the switching of
the camera modes, camera objects, and scripts.

To add a camera to the character, add component (or replace the standard ACharacter)
UATPCCameraComponent.

The main adjustment unit is Camera mode. It contains many parameters that fully describe
the camera behavior.

UATPCCameraComponent contains a set of special data assets that store parameters of
camera modes and are identified by the gameplay tags (FGameplayTag). You can read more
about the data sets and adding them to the project in the documentation from Epic Games
https://docs.unrealengine.com/en-US/Gameplay/Tags/index.html

To add a camera mode to a component, create a ATPCCameraModeDataAsset and specify
the tag in it, which should correspond to this camera mode:

https://docs.unrealengine.com/en-US/Gameplay/Tags/index.html
https://docs.unrealengine.com/en-US/Gameplay/Tags/index.html

Next, add this data asset to ATPCCameraComponent in CameraModes:

The camera mode to be automatically activated when the game is started is specified with
the DefaultCameraModeName parameter. With that, a mode with this name should be
added to ATPCCameraModeComponent.

Cameras may also be added during the game. The current camera mode may be overridden
without changing it using the SetCustomCameraMode function, and reset using the
ResetCustomCameraMode function.

The complete list of functions for working with the camera modes:

The following functions are also available for overriding in Blueprints:

1. CanSetCameraMode specifies whether the camera mode with the specified tag may
be used (the camera mode is to be added to the ATPCCameraComponent list).

2. GetDesiredCameraModeTag returns the required camera mode (for example, checks
whether the character exists in the special triggers that can modify the camera mode,
or returns the current camera mode).

3. UpdateCameraMode invokes GetDesiredCameraModeTag and sets the received
camera mode using SetCameraMode

All camera mode parameters are stored in the FATPCCameraMode structure.

All parameters are grouped by type. They are also represented by structures.

The main groups of parameters:

● Camera position control (FATPCLocationSettings)

● Camera rotation control (FATPCRotationSettings)

● Camera field of view control (FATPCFOVSettings)

● Hiding the objects between the camera and the character (FATPCFadeSettings)

● Changing the camera behavior depending on the terrain
(FATPCFollowTerrainSettings)

● Shake control (FATPCCameraShakesSettings)

The main features of the camera

UATPCCameraComponent is divided into several objects, each working with one of the
groups of the camera mode parameters and implementing a particular feature.

They can be overridden or supplemented both in C ++ and in Blueprint:

Camera Base Object

The base class for all objects that are used in UATPCCameraComponent is
UATPCCameraBaseObject. All the objects that are used in the component are inherited
from it. It contains a set of basic functions that are overridden in the child objects.

Camera Location Object

It is represented as the UATPCCameraLocationObject class. This object monitors the
camera position and rotation on the scene.

Its parameters are split into 2 structures: FATPCLocationSettings and
FATPCRotationSettings.

Key features:

● Obtaining the camera location and rotation

○ GetCameraLocation

○ GetCameraRotation

● Setting the distance from the camera to the actor

○ The maximum and the minimum distance and the scroll speed are stored
in the FATPCLocationSettings structure

○ SetCameraDistance — setting the distance from the camera to the player

○ GetCameraDistance — obtaining the current distance to the camera
without considering SocketOffset and TargetOffset

○ GetRealCameraDistance — obtaining the current real distance to the
camera

○ GetCameraTargetDistance — obtaining the distance the camera is trying
to reach (can be used if the camera does not instantly change the
distance but interpolates it)

● Setting SocketOffset and TargetOffset

○ The values are taken from the FATPCLocationSettings structure

○ Obtaining the current values

■ GetSocketOffset

■ GetTargetOffset

○ They may be modified for the current camera mode using special
functions.

■ SetCustomSocketOffset, GetCustomSocketOffset,
ResetCustomSocketOffset, HasCustomSocketOffset

■ SetCustomTargetOffset, GetCustomTargetOffset,
ResetCustomTargetOffset, HasCustomTargetOffset

● Camera lag implementation for the x, y, and z axes, the parameters are stored in
CameraLocationLagSettings

● Changing the camera snap point

○ AttachCamera To Component — set a new camera snap point

● Check collision between the camera and the character

○ bDoCollisionTest — enables and disables this option

○ ProbeSize — the size of the collision sphere to check

○ ProbeChannel — the collision channel for collision check

● Individual collision check for a particular object during the camera movement. It is
used for objects, such as fences, trees, and poles. While the camera is moving,
the collisions will not be considered for them; after the camera stops, the
collisions will be processed in the standard way. The parameters for this option
are stored in TODO

○ bSkipCollisionTestInMovement — enables or disables this option

○ SkipCollisionTestDuration — the period of ignoring the collisions after the
camera stops

○ MinLocationDeltaForSkipCollisiontest — the minimum delta of changing
the camera location for disabling collisions

○ ObjectCollisionChannelForSkipCollision — the collision channel used for
determining the object for collision disabling. Collision Response is to be
set to Overlap

● Setting the minimum and the maximum camera rotation angle around the Yaw
and Pitch axes. Parameters ViewPitchMin, ViewPitchMax, ViewYawMin,
ViewYawMax

● Changing the distance from the camera to the character depending on the
camera rotation angle around the Pitch axis. The distance modifier is stored in
the Pitch Distance Curve float curve, where value is the change of the distance
relative to the current one, and time is the camera tilt angle around Pitch.

● The automatic change of the camera rotation angle around the Pitch axis in the
absence of input. The parameters of this option are stored in
RotationOffsetSettings (type FATPCRotationOffsetSettings)

● The automatic change of the camera rotation angle around the Pitch axis to avoid
collision on top of the camera (useful for ceilings, doorways, etc.). The
parameters of this option are stored in RoofCollisionCheckSettings (type
FATPCRoofCollisionCheckSettings)

● The automatic camera rotation along the Yaw axis upon character rotation and in
the absence of input for the camera. The parameters of this option are stored in
ViewRotationToActorRotationSettings (type
FATPCViewRotationToActorRotationSettings)

Camera FOV Object

It is represented as class UATPCCameraFOVObject. This object controls the FOV of the
camera. Its parameters are stored in the FATPCFOVSettings structure

Key features:

● Setting and obtaining the current FOV of the camera.

○ If the FOV value is not explicitly overridden, it will be set to
FATPCFOVSettings::CameraFOV from the current camera mode.

○ GetCurrentFOV returns the current FOV

○ Any change does not occur instantly; it occurs smoothly with the speed of
interpolation FATPCFOVSettings::InterpolationSpeed

● FOV is overridden from the camera mode

○ SetOverrideFOV — set a new FOV

○ ResetOverrideFOV — reset the FOV overriding

Camera Fading Object

It is represented as class UATPCCameraFadingObject. This object controls the hiding of the
objects between the game character and the camera and hiding of the game character if the
camera collides with him. Its parameters are stored in the FATPCFadeSettings structure

Key features:

● Searching for objects between the character and the camera

○ The objects are searched for in the FindCollidedActors function, using
boxTrace, the size of which is calculated based on the size of the collision
of the character

○ If additional filtering of the found actors is required, a special
FilterCollidedActors function exists, which is available for overriding in the
child classes

● Hiding/showing objects. To change the object visibility, all static and skeletal
meshes are searched for the actor, and the parameters for all the materials in the
meshes found are changed.

○ MaterialFadeParamNames stores the names of the float parameters of
the material to be changed.

○ MaterialFadeMinValue, MaterialFadeMaxValue are the minimum and the
maximum values of the material parameters for completely hiding or
showing the object, respectively.

○ FadeInTime, FadeOutTime are the durations of hiding and showing the
object from 0 % to 100 %

○ FadeChannels the collision channel for searching for the objects. Collision
response for this channel should be set with the objects to Overlap.

● Hiding the own character upon its collision with the camera

○ bFadeSelfIfCollision — enables and disables the option

○ bUseCustomFadeOutTimeForSelfFade and
SelfFadeCustomFadeOutTime are responsible for overriding the
character hiding duration

○ SelfFadeCheckRadius is the size of the collision in the camera for
detecting a collision with the character

○ bSelfFadeAttachedActors - whether the attached actors are to be hidden
when the character is hidden

● To add the actor to exclusions to avoid detection and hiding, use the following
functions:

○ AddIgnoredActor

○ RemoveIgnoredActor

○ ClearIgnoredActors

● To force hide the actor, use the following functions:

○ AddManualFadeActor

○ RemoveManualFadeActor

○ ClearManualFadeActors

Camera Follow Terrain Object

It is represented as the UATPCCameraFollowTerrainObject class. This object calculates the
position displacement and the camera rotation depending on the surface inclination angle
under the character and transfers this data to UATPCCameraLocationObject (see
SocketOffset and RotationOffsetSettings). Its parameters are stored in the
FATPCFollowTerrainSettings structure

Key features:

● Changing the camera offset. The offset position is stored in the
TerrainAngleSocketOffsetCurve vector curve, where x, y, and z are the offset, and
time is the angle of surface inclination. The position change is interpolated at the
speed of SocketOffsetInterpSpeed

● Changing the camera rotation angle. The offset angle is stored in the
TerrainAngleRotationOffsetCurve float curve, where value is the additional
camera rotation around the pitch, and time is the angle of the surface inclination.
Changing the angle is interpolated with the speed of AngleRotationInterpSpeed

● AngleDelayChange is the time that must elapse from the beginning of changing
the surface incarnation angle until the offset settings are applied.

Camera Shakes Object

It is represented as the UATPCCameraShakesObject class. This object controls the camera
shake objects. Its parameters are stored in FATPCCameraShakesSettings

Key features:

● EnterToModeCameraShake is the camera shake that is activated upon invoking a
new camera mode.

● RegularCameraShake - camera shake, which is activated after the end of
ModeInCameraShake, or immediately after activating a new camera mode, if
ModeInCameraShake is not set. IMPORTANT: This shake is looping.

Scripts for the camera modes
Camera mode script is a special object that is created upon activation of the camera mode. It
is convenient for writing user logic, which should be linked to the camera mode.

To create this object, to create a blueprint inherited from the ATPCCameraModeScript class.

It has three functions available for overriding:

● OnEnterCameraMode

● OnExitCameraMode

● EventTick

For the same camera mode, it supports an unlimited number of scripts; they will be activated
in the order in which they had been added.

Triggers for automatic switching camera modes

To automatically switch the camera modes in certain zones (for example, rooms or
corridors). There are special triggers, which, when entered into, will activate the specified
camera mode.

To add a trigger to the scene, open the Modes window in the editor, select the Volumes tab,
find ATPCCameraVolume, and drag it to the location.

ATPCCameraVolume is a class derived from ABrush; it means what its shape and size may
be edited as the standard Brush Volume.

Trigger parameters:

● CameraModeTag is the camera mode to be activated when the character crossed
the trigger. The specific camera mode is to be added to
ATPCCameraComponent.

● ChangeCameraModeWithInterp activates a smooth transition from the current
camera mode to the one specified in the trigger.

● FilterActorClassesWithCamera is an optional parameter that allows enabling and
disabling triggers for certain classes. If the parameter is disabled, the trigger will
be enabled for all characters.

Console commands
For editing and debugging the camera modes, there is a set of special console commands
that start with the ATPC prefix.

● ATPC.SetCameraMode [CameraModeName] [bChangeWithInterp] activates the
specified camera mode via the CameraModeName argument

● ATPC.PrintCameraMode returns the current camera mode tag and all parameters
to the prompt

● Here are the commands for editing all the parameters of the current camera
mode:

