
29th International Command and Control Research and
Technology Symposium, 24th-26th London, UK

Topic 5: Non-Human ‘Intelligent’ Collaboration and
Autonomous Systems

AI techniques in Gaming for C2. Strategy detection,

explainability and usability in StarCraft II

Carolina Sanchez Hernandez Sam Connolly Matthew J. Clayton
Cambridge Consultants Cambridge Consultants Cambridge Consultants

Carolina.sanchez@cambridgecons
ultants.com

Sam.connolly@cambridgeconsult
ants.com

Matthew.j.clayton@cambridgecons
ultants.com

Michelle Lim Emma Hughson John Smeaton

Cambridge Consultants Cambridge Consultants Cambridge Consultants
Michelle.lim@cambridgeconsultan

ts.com
Emma.hughson@cambridgecons

ultants.com
John.smeaton@cambridgeconsulta

nts.com

Dan Valentine
Dan.valentine@cambridgeconsult

ants.com

Aravind Pravhakaran
Aravind. Pravhakaran

@cambridgeconsultants.com

Joe Smallman
Joe.smallman@cambridgeconsulta

nts.com

Abstract

Video games are an ideal type of simulation environment to create and test new AI developments, as they provide a controllable

set of variables and baselines to test results against, and data availability to explore, therefore offering a rapid turnaround on

finding which technique is most valuable and has most potential for real-world applications.

As part of the Machine Speed C2 (MSC2) programme run by the UK Defense, Science and Technology laboratory (Dstl), our project

explores: (i) piercing the ‘fog of war’ to infer opponents’ positions and (ii) investigating key elements for detecting opponent’s

strategy within the game StarCraft II. As with real-world C2, this is a complex game in which a player must make decisions with

partial information available in order to defeat an opponent. Our goal consisted of developing two AI assistants to augment a

human player’s decision making by: 1) developing an encoder-decoder neural network architecture to enable nowcasting likely

locations of enemy units through the fog of war with an associated confidence level 2) using unsupervised techniques (clustering)

and supervised techniques (a neural network classifier) to classify strategies with confidence and probabilistic metrics 3) creating

a user-centric explainability framework that translates technical outputs into visual and text explanations based on user-centric

understanding 4) performing a usability study to determine which method of communicating the AI outputs is more valuable to

non-expert users.

Details and conclusions of this study are presented with recommendations as to how to use the learnings of this project within a

C2 environment.

Keywords: fog of war, strategy detection, explainability

ICCRTS 2021​ 1

1​ BACKGROUND

Within this paper, we demonstrate the value of artificial
intelligence (AI) research for military C2 using the
commercial video game StarCraft II (SC2). We have
focused our research on how we can use gaming as a
type of simulation environment to progress development
of AI techniques, and how this might help enable further
research within C2. Our approach to this project has been
to use the gaming environment not to create yet another
AI super player, but to create AI agents that can assist and
augment the human player’s insights into opponents’
locations and strategies, to inform the player’s decision
making.

The importance of the gaming industry for the
development and study of AI algorithms is undeniable.
Large proportions of video games involve strategic
decision making, optimization processes or competition,
which make up fertile exploration grounds for AI, and
many games accumulate the large amounts of data
required for advance machine learning techniques such
as deep learning. For these reasons, AI researchers are
making significant use of video games as training
environments and benchmarks. These games have a wide
range of features and attributes that create challenged
for AI research, spawning many new algorithms in the
last decade.

A significant amount of AI research has made use of the
game (SC2), a science-fiction-themed real-time strategy
(RTS) video game. Released in 2010, SC2 is one of the
most popular RTS games ever made, with over 6 million
copies sold. It is a popular e-sports game, typically played
in 1v1 matches online.

The game’s developer, Blizzard Entertainment, have made
available an application programming interface (API) for
extracting data from the game and enabling AI agents to
interact with it, along with a large dataset of recorded
games played by human players on the game’s
competitive ladder. This has facilitated a huge amount of
research and AI development.

1.1​ AIMS OF THE RESEARCH

There are significant challenges facing the development
and transformation of C2 operations going forwards,
from a technical perspective, a human perspective, and
interactions between humans and AI agents.

The overall environment within which the future C2
concepts are being built will constitute a HAC
(human/agent collective), which could take many forms.
For example, AI agents could perform tasks
autonomously, the outputs of which could then be used

by human to improve their analysis or decision making;
humans performing tasks could work together with AI
agents to deliver key outcomes; and there are tasks and
roles that might include inputs/outputs and
collaborations between humans and AI agents.

This undertaking is ambitious. Video games can play an
important part by providing a simulation testbed for
some of these elements within different future C2
concepts. Games resemble formalized, if simplified,
models of reality, and by solving problems in these
environments we can learn how to solve analogous
problems in reality.

In this study we focused on three main areas of research:

1.1.1​ Exploring the challenge of user-centric AI
explainability for human augmentation of
decision making

The inability to explain or to fully understand the reasons
why AI algorithms perform as they do is a real problem
for practical implementation and trust. The gap between
the research community and business sectors has been
impeding the full penetration of the newest ML models in
sectors that have traditionally lagged behind in the digital
transformation of their processes [6]. This is even more
important in military contexts in which it will be essential
for C2 users in operations and warfare to understand,
appropriately trust, and effectively manage an emerging
generation of artificially intelligent machine partners. For
example, an intelligence analyst who receives
recommendations from a bigdata analytics system needs
to understand why it recommended certain activity for
further investigation. Similarly, an operator who tasks an
autonomous system needs to understand the system's
decision-making model to appropriately use it in future
missions.

In section 2, we describe how we addressed these issues.

1.1.2​ Exploring the challenge of partial information to
infer opponents’ positions.

To design and execute operational procedures, a military
expert needs specific operational information, which
influences (positively or negatively) all phases of a
mission. One common challenge when gathering
information about a mission is information gaps, due to
missing components of operational information which
can be of crucial importance, preventing experts from
making correct assessments. Another important
challenge is dynamic information, with factors rapidly
changing over time and information becoming out of
date, and therefore constantly needing to be updated [1].

2​ ​ ICCRTS 2021

In classic military terms, the ‘fog of war’ refers to the
diminished level of accuracy and reliability of information
exchanged in times of war, and the difficulties
encountered by political and military leaders when
seeking to compensate for this limitation and maximize
the value of the data used for taking decisions [2].

Methods by which fog of war are typically included in
real-time strategy video games such as SC2 include the
obscuration of information relating to areas which are
unexplored or not within sight range of the player’s base
and troops (typically including the area around the
enemy base), enemy assets, troop locations and
unknown terrain. Fog of war mechanics make only
limited portions of the map viewable. Unit movement
shifts these viewable zones and causes previously visited
areas to fade out of sight. Progression requires an
eventual confrontation with whatever lies in the
surrounding fog, forcing players to think strategically
about preparing for these unknowns [3].

Within our project, we investigated how to use
information on the full current state of the game based
on historical data and the current known portion of the
game state, to create an AI agent that nowcasts a
prediction of the full game state, indicating what most
likely lies behind the fog of war. To assess these outputs,
we also developed a methodology to estimate
confidence levels on these outputs. These aspects of the
project are described in Section 3.

1.1.3​ Exploring the challenge of extracting key features
for opponent strategy detection

Strategic thinking is greatly concerned with the
consideration of one’s own ends, ways, and means. This
is a necessary component of strategic analysis, and it can
only be achieved if ways, and means are considered with
relation to the enemy, as strategy is necessarily
adversarial [4]. Different enemies present different
challenges, different ends, different rationalities to
conceive of these ends, and differing levels of
commitment to these ends; different strategic ways in
which they can operate, and different strategic cultures.

Related to the above, opponent-modeling research uses
data gathered from past experience, or even online, to
complete or refine models of opponent behavior.
Observation of the enemy’s ways can offer the
opportunity to learn about the enemy’s assumptions [4].

Recent advances in tracking technology and both
supervised and unsupervised machine learning, coupled
with the clear need to move beyond the present
limitations of model-based approaches, have given rise to

a growing number of techniques for opponent modeling
[5].

In our research, we have used both unsupervised and
supervised machine learning to characterize and classify
opponent strategies within a SC2 game in real time and
changes of strategy over the timeframe of the game,
based on streamlined key features that help to identify
those strategies. These aspects of the project are
described in section 4.

2​ USER-CENTRIC APPROACH TO AUGMENT THE USER DECISION
MAKING: A USER-CENTRIC EXPLAINABILITY FRAMEWORK

As described in [9], it is becoming apparent within the
research and innovation community that:

●​ AI Explainability techniques (XAIs) have been
developed by experts for experts. There is a
disconnect between technical XAI approaches
and supporting users’ end goals in usage contexts
[7] and therefore, there is a need for new
approaches.

●​ Interpreting the outputs of XAIs for different
users is extremely important. There is a
disconnect between assumptions underlying
technical approaches to XAI and people’s
cognitive processes [7]. The user perspective is
needed to provide enough information for
understanding of and trust in AI tools.

●​ Both the development of more user-focused XAIs
and their interpretability for different uses and
tasks is crucial for human-machine teaming to be
successful. Potential inequalities of experience
and understanding can lead to mistrust and
misuse of AI [7].

New user-centric XAIs are starting to being explored such
as knowledge graphs and neuro-symbolic XAIs [10], but
there is a need to bridge the gap between current
practices and user understanding.

In this project, we created a framework that aims to
bridge this current gap within our gaming task, whilst also
pointing to future links with XAI development, social
sciences and behavioral sciences, in order to create the
right socio-technical solutions.

2.1​ USER-CENTRIC EXPLAINABILITY FRAMEWORK

Our user-centric approach aims to bridge the gap
between current “expert-focused” approaches to AI
development and AI explainability techniques (XAIs), and
actual user needs, in order to allow them to understand
the AI outputs and incorporate them into their decision
making (Figure1).

ICCRTS 2021​ 3

Figure 1 Summarised User-centric explainability
framework

User understanding comes from different elements.
Understanding the user goals and objectives, identifying
where AI could add value, and their needs for using and
understanding this tool should be at the centre of any
consideration for AI development. The design and
development of the AI tool needs to meet the
requirements of the context of the application and tasks
that the person will perform, but also how this tool will
interact with the user (whether this is for assisting the
user with information, teaming, cooperating, or
performing an autonomous task that needs to be
overseen).

It is therefore essential to understand the user needs in
terms of the information needed to interpret the AI
outputs and use them with confidence and to their
maximum value. In many cases, the user might not have
any technical knowledge of AI tools, but still needs
relevant and targeted information to decide on how to
use that AI tool for decision making. Mental models are
one of the approaches that have been explored, to make
sense of the perceptions and beliefs of the user before
exposing them to an AI tool, so that this tool can be
designed to address and enhance the mental model of
the user regarding the expectations of the AI and its use.
We explored this approach during our project; however
we did not implement it due to time constraints.
However, we believe that this is one of the key
approaches to explore going forwards to define what we
mean by user needs and how these might change
depending on initial beliefs.

There is also a need to acknowledge that humans and AI
interactions do not occur in isolation. The
implementation of AI within different contexts implies
the consideration of a socio-technical system where
several users will interact with several AI tools and

agents, explored within the MSC2 programme as the
Human Agent Collective (HAC) for C2.

Related to human-AI understanding, a huge amount of
research is happening on the subject of AI explainability
techniques (XAIs). However, the outputs of these
techniques are normally very “expert” like, which require
a huge amount of technical understanding of AI to be
able to make sense of them.

Human-AI interactions are a key element of research and
development to deliver AI solutions, but are also thought
out in a very mechanistic way and not very flexible or
adaptable to different users within a HAC.

To bridge this gap and deliver the right information in the
right format for the user, within our project we
considered:

1)​ Who the users of the AI tool were:

●​ We used a player of SC2 as a proxy for a decision
maker for C2. The player needs to assess the
situation of the game with limited information
and hypothesize opponents’ locations and
movements to make their own decisions on: (i)
prioritisation of own resources for intelligence,
surveillance, and reconnaissance (ISR) (ii)
decision making on strategy and actions that can
give them advantage in the game.

2)​ What the user requirements for AI functionality
were:

●​ We assessed two functionality requirements
within the game to address the user needs: (i)
piercing the fog of war to infer opponents’
locations and (ii) classifying opponents’ strategy
and changes in strategy over time. These two AI
assistants give the player enough information to
augment their decision-making capabilities.

3)​ What the user requirements for AI explanations
were:

●​ We assumed the human (player) did not have
technical knowledge of AI and therefore consider
needs for understanding of AI and AI outputs for
decision making.

4)​ The socio-technical context within which the AI
tool would be used was:

●​ We took the gaming environment as a learning
platform for human-AI interaction. We explored
through a usability study how humans (players)
would interact and use the information provided.
We considered how to explore this further and
learnings for C2 decision making.

4​ ​ ICCRTS 2021

The following sections will explain in detail how we
addressed the above user needs.

3​ AI FOR INFERRING OPPONENTS’ POSITIONS FROM PARTIAL
INFORMATION

3.1​ PREVIOUS WORK

SC2 has been a popular platform for researchers to
develop and demonstrate cutting edge AI systems. One
of the most important AI developments leveraging SC2 is
DeepMind’s AlphaStar [11]: a model trained using
Reinforcement Learning to play SC2 to a level equivalent
to top human professional players.

Our work on hidden state estimation in SC2 builds on the
existing body of work in this area using SC2 as well as its
predecessor game StarCraft: Brood War. We leverage the
SC2API software developed by DeepMind, and apply
techniques inspired by work performed by teams at Meta
[12][13], and Samsung [14], who developed AI
approaches for estimating aspects of the game state
hidden by the fog of war using a model we call a
“defogger”, following [13].

3.2​ DATA SETS AND DATA EXTRACTION

The dataset used in this work consists of 79,806 recorded
games of SC2 (“replays”) played on the open ladder by
human users on game versions 4.9.3 and 4.10.0. This
data was sourced from Blizzard’s Game Data API [15].

Replay files do not contain full state data themselves,
instead containing only basic metadata and the series of
clicks made by the players to take actions in the game.
State data was therefore extracted by using the SC2 API
to run the replays with the SC2 game engine and save the
full state for a given game frame. Each replay contains all
data required to completely reconstruct the game from
either player’s perspective. As the SC2 game engine is
deterministic, re-running this extraction returns the same
extracted data every time.

As the SC2 ladder contains a wide variety of player
skill level, we limit the data set to games between
players with a minimum MMR (Matchmaking
Rating, a measure of player skill) of 1000 and
minimum actions per minute (APM) of 10; this
eliminates a small fraction of players who
perform poorly. The dataset therefore consisted
only of games involving experienced and expert
players, who make up the majority of the SC2
ladder population.

The dataset was also limited to games in which both
players used the ‘Terran’ race – one of 3 races
available in SC2. The Terran race is a human or

human-like race with military units and structures
which are more similar to real-world military
assets than those of the other two (alien) races,
albeit still having Science Fiction aspects due to
the game’s setting. For this reason, games
including the other two races (Zerg and Protoss)
were excluded.

Every 45th game frame was extracted – as the game
typically runs at 22.5 frames per second, this lead
to an extracted data rate of 1 frame every 2
seconds. The dataset contains games the
majority of which are 5 minutes to 60 minutes
long, with a typical game lasting around 15
minutes, i.e., around 450 extracted frames. The
first 30s of each replay were discarded, as this
period is essentially the same for all games on a
given map.

The dataset was split randomly into training,
validation and test sets of full games, in the ratio
of 80:10:10. The training split (63,844 games) was
used to optimize the neural network parameters
during training. The validation split (7,979 games)
was used to measure performance during
training. This measurement was in turn used to
optimize network hyperparameters such as
learning rate and model architecture. The test
split (7,983 games) was used to compare model
performance on data that was not used to
optimize the network parameters or
hyperparameters. Quantitative results shown
later in this paper are calculated using this data
split, to provide unbiased estimates of
performance. For both training and evaluation,
batches of sequences were randomly drawn from
all periods of the game.

3.3​ MODEL ARCHITECTURE

For our ‘defogger’ model, we use a neural network
architecture with an encoder-decoder design inspired by
a the SC2 defogger model used in [13], and similar to the
popular U-Net structure [16]. The model works similarly
to an autoencoder: encoding the input into a
lower-dimensional latent space – a model-defined
projection space in which datapoints appear as vectors –
then decoding it into the output space in which
datapoints have our chosen output format. We add a
recurrent temporal core between the encoder and the
decoder, to allow the model to process multiple input
frames to generate an embedding of both temporal and
spatial information, as well as an auxiliary output head to
generate non-spatial outputs and stabilize training. In

ICCRTS 2021​ 5

addition, following U-Net, we make use of 4 skip
connections to allow spatial information to pass directly
from the encoder to the decoder without passing
through the core, making it easier for the model to utilize
spatial information in the input. The model was
implemented using the deep learning framework PyTorch
[17]. A diagram of the overall architecture is shown in Fig.
2.

Figure 2. Diagram of the key components of the neural
network architecture used in the ‘defogger’ model for
predicting the full game state from the partial state.

Model inputs

The inputs to the ‘defogger’ model consisted of 87 spatial
data channels consisting of 64 x 64 grid maps containing
different information from the partial game state
extracted from a single frame of an SC2 game. The data in
each of the 87 channels was assigned as follows:

●​ 1-40: Player unit counts for each of the 40
Terran unit types (structures, vehicles and
infantry), showing the number of friendly
units of each type, present in each cell.

●​ 41-80: (Partial) opponent unit counts for each
of the 40 Terran unit types, showing the
number of units of each type present in each
cell. Only the counts for units that are visible
to the player or for previously seen structures
(in their last known locations) are included.

●​ 81: ‘Blip’ counts for unclassified opponent
units observed by a ‘Sensor Tower’
(essentially “radar blips”). This channel counts
the number of blips in each grid cell.

●​ 82-83: Resource levels for Vespene gas and
Minerals (the two resources which the player
can extract from the terrain) at each grid cell.
This input only provides information on
whether these resources are present on the
map, not whether they are being extracted.
All resource deposits are visible to the player
from the start of the game, however if the

opponent has extracted resources from a
deposit not visible to the player, the input will
still show the last-seen quantity of remaining
resources (or the full quantity from the start
of the game if it has not yet been observed at
all).

●​ 84: Map visibility: 1 if that grid cell is visible to
friendly units, 0 if not visible. When part of a
grid cell is visible, this value shows the
fraction of the cell which is visible.

●​ 85: Traversable regions of map: 1 if units are
allowed to “walk” on that grid cell, 0 if the cell
cannot be walked on (e.g., if it is part of a cliff
or other obstacle). When part of a grid cell
can be walked on, this value shows the
fraction of the grid cell that can be walked on.
This restriction only affects ground units: air
units can traverse all grid cells.

●​ 86: Map regions that can be built on: 1 if
buildings can be constructed in that cell, 0 if
they cannot. When part of a grid cell can be
built on, this value shows the fraction of the
cell that can be built on.

●​ 87: Current game time as a count of how
many game frames have elapsed since the
start of the game (there are 22.5 of these per
second of game time). As this is a single,
global, non-spatial parameter, its value is the
same in each grid cell, so the same value is
repeated at every point in the 64x64 grid. The
game time is input in this way to allow all
inputs to be the same shape, and to allow the
game time to be used by all cells in
subsequent convolutions.

Model outputs

Similar to the model input, the model outputs the spatial
distribution of 81 output channels on a 64x64 grid. These
channels are not the same as the input channels, and
contain the following:

●​ 1-40: Predicted player unit counts per grid cell
for the 40 Terran unit types for each cell
(these should match the input channels 1-40,
as this information is fully available to the
model in the input).

●​ 41-81: Full estimated opponent unit counts
per grid cell for the 40 Terran unit types for
each cell – this should accurately reproduce
visible opponent units in the input, as well as
predicted unit placements behind the fog of
war.

6​ ​ ICCRTS 2021

●​ 81: Estimated likelihood that mineral mining is
occurring at a Command Center/Orbital
Command/Planetary Fortress in that cell
(including locations behind the fog of war).
This estimates the locations of enemy bases
performing resource extraction.

Additionally, the auxiliary output head produces a
length-40 vector of non-spatial total unit counts for each
opponent unit type across the entire map.

Encoder

The encoder is made up of a bank of 2D Convolution
layers followed by a Linear layer, which compresses the
87 64 x 64 spatial input channels into a set vectors of
length 512 for each input frame. These vectors comprise
global state embeddings which encode all the
information derived from the map for that frame.

Sigmoid linear unit (SiLU) activations introduce
non-linearity after each layer. We apply Batch
Normalization after each layer to improve training
performance. Input sequences are processed as batch
samples until the final layer, whereupon the tensor is
reshaped to include a sequence dimension for input into
the temporal core. Skip connections leave the encoder at
each convolutional layer, to allow spatial information to
“leak” to the decoder directly, which helps reconstruct
spatial detail in the output map.

Temporal core

The temporal core was incorporated to provide a
mechanism for the model to accumulate information
from multiple input frames and provides it with
“memory”. We use an LSTM (Long Short-Term Memory
[18], as it is a standard approach for processing sequence
data.

Decoder

The decoder transforms the spatiotemporal embedding
output by the temporal core back into the spatial data
which make up the output map, effectively doing the
reverse of the encoder. This is done by reshaping this
output latent vector into a spatial representation with a
low resolution (8x8), then passing it through a series of
transpose convolution layers to expand the
dimensionality of the latent representation tensor up to
the 64x64 output resolution.

Prior to each transpose convolution layer, the
intermediate latent representation tensor is combined
with data from the skip connections originating in the

encoder at each resolution increment. These tensors are
combined by concatenating them along the channel
dimension and then using a convolution layer with a 1x1
kernel to combine the two representations.

We apply a Rectified Linear Unit (ReLU) nonlinearity after
every convolution and transpose convolution layer, and
we apply Batch Normalization after every transpose
convolution layer.

We apply a final sigmoid activation to the mining
likelihood output to force it to the range [0, 1], as it
represents a probability.

Auxiliary output head

The auxiliary output head takes the spatiotemporal
embedding vector produced by the temporal core and
uses it to estimate the total number of each type of unit
present in the entire map, without regard to where on
the map those units are. This head performs two
functions:

●​ The global unit count estimates produced by
this head are used to calculate an auxiliary
loss which improves the training stability of
the network.

●​ The dedicated global unit count estimates
provided by this output may have different
error properties to a global estimate
generated by summing across grid cells in the
main spatial output. This is useful as a
diagnostic during training to monitor the
status of the temporal core.

The auxiliary head is made up of a set of linear layers, as
it deals with the linear global vectors rather than spatial
maps, along with Batch Normalization blocks and SiLU
nonlinearities.

3.4​ DEFOGGER TRAINING APPROACH

Loss function

The loss function used to train the model has two
components:

▪​ A component calculated from the

high-dimensional (spatial) model output
generated by the decoder. This loss provides the
primary training signal for the model’s
predictions by comparing the decoder’s output
to the true full game state. This loss component
in turn consists of two subcomponents:

▪​ A Mean Squared Error (MSE)

ICCRTS 2021​ 7

unit-count-prediction loss applied to the
80 output channels that predict unit
counts.

▪​ A mining-prediction loss applied to the

single output channel that predicts the
probability of the opponent mining in
each grid cell. As this is a probabilistic
output, a Negative Log Likelihood (NLL)
loss is used.

▪​ A component calculated from the auxiliary

output head which splits off after the temporal
core. This loss stabilizes the training of the
encoder and temporal core, and ensures that the
model generates a rich embedding in the
temporal core, rather than relying only on the
skip connections which bypass the core (and the
auxiliary output head). An MSE unit-prediction
loss is used here.

The components of the loss function are combined by
addition, and are balanced using scaling factors . The α

𝑛
total loss is therefore given by:

𝐿𝑜𝑠𝑠 = ‖𝑦
𝑢𝑛𝑖𝑡

− 𝑦
^

𝑢𝑛𝑖𝑡
‖

2

2
− α

0
𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙𝑠

∑ 𝑦
𝑚𝑖𝑛𝑖𝑛𝑔

log 𝑙𝑜𝑔 𝑦
^

𝑚((
Where is the true game state and is the game state 𝑦 𝑦

^

estimated by the model. During training, loss
components were tracked individually (in addition to the
total loss) to allow performance of different aspects of
the model’s predictions to be monitored.

Learning rate schedule

Our training process utilised a 1-cycle cosine annealing
learning rate schedule which exploits the phenomenon of
super convergence [19], following the recommendations
[20]. This schedule performs an initial warm-up phase at
a low learning rate, then cosine-anneals the learning rate
to a value significantly above the optimal value to enable
super-convergence, before finally cosine-annealing it to
zero to overcome stochastic noise.

This approach enabled a reduction in training time by a
factor of 5 when compared to traditional deep learning
schedules which use a constant learning rate, or one that
anneals downwards during training.

For our model, the best-performing constant learning
rate value is 0.001, which requires approximately 1000
epochs of training to reach good performance. However,
the 1-cycle approach required only 200 epochs to surpass
the constant-learning-rate performance. A secondary
advantage of this approach is reducing overfitting due to

the increased gradient noise at the higher peak learning
rate.

Training process

The defogger model was developed, and its performance
improved, by devising a set of experiments which tested
the effect of variations in model architecture and training
approach, with the results of each experiment informing
later experiments. In total, we performed approximately
600 training runs to optimize and stabilize the training
process, hyperparameters, and model architecture.

All models were trained on an NVIDIA DGX compute
server on the Cambridge Consultants site with 8 NVIDIA
V100 AI accelerator graphics processing units (GPUs).
Each V100 can process approximately 10,000 replays, or
14 GB of replay data, per minute during training.

3.5​ CONFIDENCE-AWARE DEFOGGER MODELS

A variation of the ‘standard’ defogger model was also
developed to predict confidence levels for each spatial
unit count prediction in the model output. This was
achieved by training the model to output a variance
estimate indicating the variation in the training dataset
for each opponent spatial unit prediction – the main
count prediction in this case acting as the mean of a
normal distribution with the predicted variance. This acts
as a measure of the model’s confidence in its estimated
unit counts.​
This additional output was implemented by increasing
the output map channel count from 81 to 121 when
active. The variance is not predicted for the player’s
spatial unit predictions, any non-spatial unit counts, or
mining locations – hence the channel count increasing by
40, one for each of the opponent unit type count
variances.

In order to train the outputs to represent the mean and
variance of the unit count probability distribution, a
modified loss function was used for the spatial
unit-count-prediction loss, in place of the MSE loss. This
approach is based on the Beta-Negative-Log-Likelihood
loss introduced by [21], which allows the simultaneous
learning of the mean and variance of the target
distribution at the cost of introducing a new
hyperparameter . This modified β

𝑐𝑜𝑛𝑓
unit-count-prediction loss is given by:

𝐿𝑜𝑠𝑠
𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒

=
𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙𝑠

∑ σ
^ 2β

𝑐𝑜𝑛𝑓⎰
⎱

⎱
⎰

𝑛𝑜 𝑔𝑟𝑎𝑑

1
2 log 𝑙𝑜𝑔 σ

^ 2() + (𝑦−

2σ
^

⎡
⎢
⎣

Where and are the predicted mean and variance, µ
^

σ
^

respectively, of the normal distribution for the unit count
for a given unit type in a given grid cell.

8​ ​ ICCRTS 2021

As the player’s spatial unit counts are part of the input,
the variance of these counts could not be left as a
prediction of the model, as its value tended to zero,
causing the loss component for the prediction of the
player’s units to inflate exponentially and dominate
learning. However, an using MSE loss for the player’s
units was found to adversely affect training, due to the
mismatch between loss scaling between the player’s and
opponent’s unit count predictions. A small, fixed variance
was therefore used for the player’s unit-count-prediction
loss, allowing it to balance with the opponent
unit-count-prediction loss once the predicted variance for
opponent units had reduced. This fixed variance value
therefore constituted an additional training
hyperparameter. Despite this measure, the training
remained less stable than the model which did not
predict confidence, due to the sensitivity of the loss to
changes in predicted variance and the balance between
loss components.

As there is no ground truth for variance (as there is no
variation in the unit counts for a given game state), it is
not possible to directly assess the performance of
variance prediction.

Instead, we plotted the mean predicted variance within
bins of unit count prediction error magnitude across all
frames of the test set replays (see Figure 3). Bins were
defined such that there was a fixed number of bins
evenly spaced logarithmically across the count error
range, giving bin widths of ~ln(error) = 0.29.

On average, and above a count error of ~0.001 (i.e. for
predictions in hidden areas) predicted variance was
found to increase with increasing unit count prediction
error, showing that confidence values do indicate the
likely accuracy of unit count predictions.

Figure 3. Unit count prediction error v. mean predicted

unit count variance of the confidence model when applied

to the test data set, showing the correlation between the
two. Error bars show the standard deviation of the

predicted variance values in each bin.

3.6​ PERFORMANCE RESULTS

We show quantitative performance metrics for the
defogger model in Table 1. This table provides the values
of 9 metrics calculated for our standard and
confidence-aware defogger models, as well as 6 baseline
approaches. Full details of each performance metric as
well as all baselines are provided in Annex A.

Typically, the final standard (non-confidence-aware)
model achieves the following performance:

●​ Over 30% IoU for placement of non-zero
opponent unit counts in map regions
obscured by the fog of war

●​ Over 70% IoU for spatial distribution of mining
prediction in hidden regions

These results should be compared to the set of non-AI
baselines (see Annex A) which achieve, at best for each
metric:

●​ 26% IoU for placement of non-zero opponent
unit counts in map regions obscured by fog of
war

●​ 19% IoU for spatial distribution of mining
prediction in hidden regions

●​ RMSE of 785 and 19 unit counts per unit type
for non-spatial unit counts and integrated
spatial counts

The model consistently outperforms all of the baselines
at all periods of gameplay. For full results across all
models and baselines for all performance metrics, see
Table 1.

The prediction results of the confidence-enabled model
are worse than the standard model across all metrics,
likely due to the need for the model to estimate the
additional confidence outputs, requiring it to distribute
less of its representational capacity to the unit count
predictions themselves. However, the
confidence-enabled model still performs similar to or
better than the baselines in many of the metrics. Notably,
the IoU metrics are good whilst the spatial count error
metrics are not as good, implying the spatial predictions
of the main prediction head performed well but that that
the predicted counts at each location were not as
accurate. The performance of the non-spatial unit count
prediction head was similar to the standard model, but

ICCRTS 2021​ 9

slightly worse, showing the predictive performance of the
model as a whole was worsened by having to additionally
predict opponent unit count variances.

Performance of both models was also assessed at
different stages of the game, defined by blocks of 100
game frames; given that mode of play typically changes
with absolute elapsed time, this provides a better picture
of performance by game stage than using fractions of the
total game length.

For the standard model, the locations of the opponent’s
units which are hidden from view are predicted very well
initially (>60%), declining as the game progresses to <30%
- however, the accuracy consistently outperforms that of
the baselines at all game periods. The model predicts the
locations of the player’s units (which are visible in the
input) nearly perfectly, and therefore matches the
performance of baselines which replicate the input. The
locations of the opponent’s units which are visible are
also predicted as well as possible based on the input
alone, again equalling the baselines’ performance. As
with the overall results, the confidence-aware model
performed worse than the standard model across all
metrics at all game stages, but outperformed some or all
baselines for some metrics, particularly IoU metrics. See
additional results in Annex A. for a comparison of visible

and hidden opponent unit prediction accuracy over the
course of the game for the standard model and the
baselines.

We highlight the main limitations of our approach:

▪​ As the model has been trained on gameplay

recorded from competitive players who display a
high level of familiarity and skill with SC2, it can
be difficult for the model to generalise to players
who are less familiar with the game.

▪​ Estimating the locations of enemy mobile forces

has proven very challenging. Although the model
is effective at locating static targets like bases,
mining operations and static defence buildings, it
has limited ability to estimate the location of unit
concentrations.

▪​ Our model does not make effective use of

temporal sequence data. Although the
architecture is designed to encode information
from a sequence of input frames covering an
extended time interval, we were not able to train
the model to learn useful features from previous
frames.

Model IOU player
IOU

opponent
visible

IOU
opponent

hidden

IOU mining
visible

IOU mining
hidden

Unit count
error player

Unit count
error

opponent

Unit count
error

non-spatial
player

Unit count
error

opponent
non-spatial

Standard
model

1.00 0.74 0.42 0.81 0.72 1.6 14.0 1.2 0.6

Confidence
model

0.97 0.68 0.31 0.70 0.19 187.2 191.6 1.7 1.6

Average
baseline

1.00 0.71 0.02 0.94 0.00 0.0 24.1 791.1 245.1

LKP baseline 1.00 0.77 0.02 0.99 0.00 0.0 23.7 798.9 243.5

Mirror
baselines

1.00 0.64 0.26 0.93 0.19 0.0 19.1 1442.8 102.4

Return
baseline

1.00 0.80 0.01 0.99 0.00 0.0 24.1 792.3 244.7

Sum baseline 1.00 0.58 0.02 0.99 0.00 0.0 24.1 785.3 244.7

Zero baseline 0.00 0.00 0.00 0.00 0.00 25.6 25.6 1004.8 422.3

10​ ​ ICCRTS 2021

Table 1. Performance metrics for the ‘standard’ and ‘confidence-prediction’ defogger models, and the baseline models.
The metrics for the best-performing model and baseline for each metric are highlighted in bold.

4​ AI FOR DETECTING OPPONENT’S STRATEGIES

SC2 players may adopt different playing styles or
“strategies” during a match, to improve their chances of
victory. For example, they may attempt to produce large
numbers of military units at the start of the game, in
order to force a quick victory over their opponent.
Alternatively, they may take a more defensive strategy,
and focus on improving their economy so they can
produce more late-game units (which are typically more
powerful than early-game units). Players may also focus
on building units of a specific type, e.g. airborne units,
light infantry or armoured vehicles. Several of these
strategies are commonly understood and named within
the SC2 player community.

If a player knows what strategy an opponent is pursuing,
they can take actions to counter this. For example, if their
opponent is building large numbers of airborne units,
they may focus on creating anti-air units.

This process was carried out in four stages:

●​ We extracted a set of input features from
different game replays which were deemed to
be likely to have different distributions
depending on the opponent’s strategy, based
on knowledge of typical SC2 strategies.

●​ We used unsupervised clustering techniques
to find collections of games where the
opponent appeared to be following a
common strategy, and manually labelled each
collection.

●​ We trained a set of supervised classification
models which could be used to predict an
opponent’s strategy at different stages of the
game, using the clusters as “ground-truth”
labels.

●​ We created a simplified strategy classification
model, which used a smaller set of input
features, to aid interpretability.

4.1​ DATASET

For the strategic clustering work, we restricted the
dataset to only the 100,450 replays available from SC2
version 4.10.0. We applied the same criteria as used for
the defogger development to down select from these to
8,768 suitable replays. For the unlabelled strategic
clustering process, all of these down-selected replays
were used. For the supervised classifier training, the
down-selected replays were divided into train, validate,

and test sets according to an 80:10:10 ratio.

4.2​ INPUT FEATURES

For these studies, we selected a range of game features
which fulfilled two key criteria. Firstly, they were deemed
likely to be useful indicators of an opponent’s strategy,
and likely to have different distributions for different
strategy types. Secondly, they had simple definitions
which could be easily interpreted by a human. .
Furthermore, for the supervised strategy classifier we
only used features which could be calculated while a
game is in progress, allowing strategies to be detected
during the game rather than after its conclusion. The
features we chose included:

●​ The total numbers of different types of units
(infantry, armoured vehicles, or airborne
vehicles) and buildings, and the amount of
resources spent on each.

●​ The total amount of resources which have
been collected and spent, and the recent
rates of collection and spending.

●​ Whether certain unit and building upgrades
have been built during the game up to the
current time.

●​ The time at which certain buildings were first
constructed (if constructed yet).

●​ The distance between buildings and the
player’s starting location.

●​ How much time the game has been going on
for.

To calculate these features, we used ground-truth
information from replays, extracted using the
methodology outlined in Section 3.2. After producing our
final strategy classifier model, we also extracted these
features from the predicted full-state outputs of the
defogger model (see Section 3) This allowed us to assess
the impact of the imperfect reconstruction of the full
state on the strategy classifier model’s performance (see
Section 4.7).

4.3​ UNSUPERVISED CLUSTERING OF STRATEGIES

After extracting features for strategy classification, we
sought to identify clusters of related games in the data.
To do this, we used the popular K-means clustering
algorithm to identify 7 strategic clusters in a feature
space defined by 8 strategically relevant features,
selected using expert knowledge of the SC2 domain to
correlate with the player’s strategic intent while

ICCRTS 2021​ 11

minimizing dependence on the details of how the game
played out.

After the replays were each assigned to one of these
strategic clusters, we examined the distributions of the
input features and watched samples of replays from each
cluster, to determine the kind of strategy to which each
cluster corresponded. These assignments were based on
the authors’ existing knowledge and online research of
strategies which SSC2 players typically pursue. The
strategy labels applied to the 7 clusters, along with the
number of replays in each cluster, are:

●​ Bio aggressive (2113 replays) – a high focus
on the production of “bio” (or infantry) units,
with limited spending on vehicles. Players
typically attack early and delay economic
expansion.

●​ Air (1603 replays) – a high focus on the
production of the Battlecruiser and Viking air
combat units, with correspondingly high
spending of the Vespene gas resource
required to construct these units.

●​ Bio macro (2195 replays) – a high focus on
the production of bio units, but with a higher
economic focus than the ‘bio aggressive’
strategy, and more production of supporting
units like Medivac air vehicles.

●​ All-in (547 replays) – an extremely low focus
on economic expansion, and very early
attacks using armies of bio units in an attempt
to force an early win before an opponent has
built defensive capabilities.

●​ Harass/proxy (330 replays) – a high focus on
the production of “raiding” bio units such as
the Reaper. The player often builds a “proxy
barracks” close to the opponent’s base to
enable a quick attack through construction of
units nearby.

●​ Mech (1739 replays) – a high focus on the
production of mech units (armoured vehicles),
with a correspondingly high number of
buildings to produce these vehicles. This leads
to games of medium length.

●​ Turtle (176 replays) – a high focus on
defensive buildings, to guard the player’s
base. This can lead to very long games. This is
a relatively unusual strategy.

4.4​ SUPERVISED CLASSIFICATION OF STRATEGIES

After assigning each game in the dataset to one of these
strategy clusters, we trained a supervised classifier so we
could predict an opponent’s strategy in an unseen game
from outside the clustering dataset, and while the game

is in progress. During training experiments, we assumed
each game’s strategy label at the end of the game was a
“ground truth” label of the opponent’s strategy. We
calculated a set of 68 input features, calculated at 100
randomly sampled frames from each game in the data. A
sub-set of 10% of the games were set aside as a
validation set, used to assess the classifier’s performance
when selecting an algorithm and tuning its
hyperparameters. A further 10% of the games were set
aside as a test set, to calculate the unbiased performance
of the final model.

After experimenting with a support vector machine
(SVM) technique, we used a feed-forward neural network
classifier due to its improved performance and training
time relative to an SVM. The network included two
hidden layers of 256 nodes each, with an Exponential
Linear Unit activation function following each node [22] .
The outputs of the final layer were passed through a
softmax function, such that the model output would be
the probability of a data entry (i.e., the replay from which
the input features were taken) belonging to each strategy
class. The network was trained to minimize the
cross-entropy between the ground-truth strategy and
each of these output probabilities, using the Adam
optimization technique [23] with a batch size of 128

samples and a learning rate of . Dropout was used to 10−4

mitigate overtraining, and data from smaller strategy
classes was oversampled to improve the classifier’s
performance on these classes. To improve the numerical
stability of the neural network, each feature was
transformed so that training data was distributed with a
mean of zero and a standard deviation of 1. Linear
transforms were used for most input features, while a
small number were log-transformed.

Across the whole test set, this classifier showed an
accuracy of 0.57, with the precision and recall on each
strategy class ranging between 0.34 and 0.66 (see Table
2). The classifier performed best on classes with large
numbers of members such as Bio/macro, and poorest on
classes with fewer members such as Turtle.

Strategy Recall Precision

Bio/aggressive 0.64 0.47

Air 0.46 0.87

Bio/macro 0.66 0.61

All-in 0.34 0.49

Harass/proxy 0.48 0.52

Mech 0.58 0.56

Turtle 0.35 0.41

12​ ​ ICCRTS 2021

Table 2. Performance of the strategy classifier neural
network for each of the 7 strategic clusters.

We examined the classifier’s performance as a function
of game time, as shown in Figure 4. The classifier’s
performance at the early stages of games is relatively
poor with an accuracy score of 0.30 during the first two
minutes of play. This is because unit compositions and
buildings constructed by players pursuing different
strategies do not differ significantly at early stages of the
game. The performance then improves as the game
progresses, and unit compositions diverge for different
strategies. For example, for gameplay after the
ten-minute mark, the accuracy score reaches 0.81. The
classifier performed best on long games.

​

Figure 4. The performance of the strategy classifier for
games of different length (x-axis), and at different stages
through the game (y-axis). The histogram at the top
shows the number of games with different lengths.

4.5​ CREATING A SIMPLIFIED CLASSIFIER

While the neural network strategy classifier had
satisfactory performance when predicting an opponent’s
strategy, it proved difficult to interpret the reasons for its
predictions. This was due to the large number of input
features, many of which had relatively non-intuitive
definitions.

To resolve these issues, we created a simplified classifier
neural network model, which used only the 15 features
which we judged to be most easily interpretable by a
user. These features mainly consisted of the number of

key buildings and units belonging to the opponent, and
the proportions of resources spent on key unit types.

We wanted the predictions of this model to mimic the
original classifier as closely as possible. Therefore, we
used a model distillation technique, where the simplified
“student” model is trained to match the outputs of the
original “teacher” model, rather than the ground-truth
labels in the data. Apart from the reduced number of
inputs to the 15 simplified input features, the student
model’s architecture was identical to that of the teacher
model. It was trained to minimize the mean squared
error between the logits for its strategy predictions and
the logits for the teacher model’s predictions. We
considered a more complex loss function which included
a term rewarding correct predictions of ground-truth
strategy labels [24]. However, we ultimately used the
simpler mean-squared error method, because our
priority was for the student model to match the teacher’s
predictions, rather than optimally matching ground-truth
labels. The same training dataset and optimizer were
used as when training the teacher model.

After training concluded, we measured the correlation
between the student and teacher models’ predictions
using a Pearson correlation coefficient, finding values of
0.96 or greater for each strategy class, on the test
dataset. The distilled model showed an accuracy of 0.53
relative to ground-truth labels across the full test set,
close to the original model’s accuracy of 0.57. As for the
original model, the performance varies with game time,
with an accuracy score of 0.22 in the first two minutes,
and 0.81 for gameplay after ten minutes.

4.6​ EXPLAINABILITY WITH SHAPLEY ADDITIVE EXPLANATIONS

Following the training of the simplified
strategy-classification model, we considered how to
create explainability outputs for it. Using this simplified
model, we created an explanation model using the
Shapley Additive Explanations (SHAP) method [25]. This
model apportions values to each input feature for a given
classifier prediction, showing the amount by which that
input feature is likely to have increased or decreased the
probability of that prediction. For example, if an
opponent has a large number of airborne units, this
would typically indicate that they are pursuing the “Air”
strategy, meaning the model will give a large SHAP value
for the air spending fraction and similar features. This
provides some insight into the key information which the
strategy classifier is using to calculate its predictions,
helping the user to judge whether these predictions are
reliable or not. We used the DeepSHAP method, which
uses optimizations to improve the speed of SHAP

ICCRTS 2021​ 13

calculations with neural network-based classifiers.

4.7​ PERFORMANCE USING DEFOGGER OUTPUTS

The strategy clusters and classification models were
trained using ground-truth information about the
opponent’s units and resources. In a more realistic
setting, such information would not be accessible to a
player, meaning they would need to only the partial game
state information available during normal play. It follows
that they could therefore use the outputs of the defogger
model to estimate the full game state from the available
partial game state, to use as input into the strategy
classifier. We therefore measured the performance of the
simplified classifier when its input features were
calculated from the spatial maps and unit count vectors
output by the defogger model. The majority of the
features (such as number of units and times they were
first constructed) could be directly extracted from these
outputs, or derived using simple methods (e.g. using the
difference between unit count estimates in adjacent
game frames to estimate when units are built or
destroyed). However, resource-related values are not
directly predicted by the defogger model. Resource
collection values therefore needed to be estimated using
the number of resource-gathering units predicted by the
defogger model, together with the typical rates of
resource gathering by these units as seen in games in the
defogger’s training dataset. Rates of resource spending
could be estimated from the number of units being built
(as predicted by the defogger), and their costs.

After calculating these input features, we measured the
performance of the strategy classifier model as the values
of each input feature were changed from their
ground-truth values to values derived from the defogger
model (see Figure 5). We used the F1 score to measure
this performance (the harmonic mean of precision and
recall), macro-averaged across the different strategy
classes (so that the metric assigns equal importance for
each class). The order in which these features were
converted was chosen to minimize the rate at which the
performance dropped (i.e. picking the feature which gave
the lowest performance drop, at each step moving from
left to right)

Figure 5. degradation of strategy classifier performance
as different features are changed from ground-truth to
defogger-derived values (moving left to right).

The classifier had an initial F1 score of 0.49, which
dropped to just 0.015 after all features were replaced. At
this point, the classifier predicted opponents in all games
were following the “All-in” strategy. However, some of
the features could be converted to defogger-derived
values without substantial drops in performance, such as
the maximum distance of buildings from the command
centre, or the number of command centres the opponent
has. This suggests that in a more realistic setting, the user
could focus on gathering accurate information about the
variables which gave substantial performance drops, such
as the number of resource-gathering units or the time
the opponent took to build a second command centre,
while using the defogger-derived values for features
which give a smaller performance drop.

We also applied some post-processing to the defogger
model’s outputs, to make them more closely match real
data, to see if this improved classifier performance. We
re-scaled the unit count vectors to match the
distributions in ground-truth training data, and rounded
unit counts down to the previous integer. This slightly
improved the performance of the strategy classifier after
all features were converted to defogger-derived values,
increasing the F1 score from 0.015 to 0.065. However,
this performance is still too poor to be useful to a player.
As a future development, the strategy classification

14​ ​ ICCRTS 2021

model could be re-trained using defogger-derived
training data, so it can learn the patterns of noise which
the defogger introduces. This is likely to improve the
strategy classifier’s performance when applied to
defogger-derived data.

5​ THE “BRIDGE” TO PROVIDE THE RIGHT INFORMATION AND THE
RIGHT EXPLANATION

As mentioned in section 2, there is disconnect between
AI outputs and providing explanations for non-AI-experts
about the process behind those AI outputs. Numerical
locally interpretable model explanations such SHAP [25]
are helpful, however they require specialised AI expert
knowledge to fully understand.

Recent improvements in natural language generation
have made rationalisation an attractive technique for AI
explanations, because it is intuitive,
human-comprehensible, and accessible to non-technical
users. Rationalisation provides explanations justifying a
model's prediction in natural language [26][27]. It aims to
offer a coherent and interpretable reason for that
prediction and allows individuals without domain
knowledge to understand how a model arrived at a
prediction.

For these reasons, we used rationalisation as our
approach to breaching the technical gap between
outputs and users’ understanding. In our explanations,
we constructed rationales or justifications which present
the input features influencing the model's prediction. Our
objective was that the reasoning behind the prediction
could be understood by a non-technical user simply by
reading the explanation/rationale, thereby revealing the
model's decision-making process.

We followed the model of ‘selective explanation’s [28]:
usually, users do not expect an explanation can cover the
complete cause of a decision - instead, they desire an
explanation that can convey the most valuable
information that contributes to the decision. A sparse
explanation, which includes a minimal set of important
features that help justify the prediction, is preferred.

Our aim was to answer the important questions which
are key to the user achieving their goal:

●​ What might the opponent be doing (behind the
fog of war)? What can an AI tell me about
red-force positions through information with
limited availability, and with what level of
confidence?

●​ What do the opponent’s actions mean at
different stages of the game? What can an AI tell
me about the red-force strategy, so that I can

understand and incorporate this information into
my decision making accordingly?

We answered the questions above by creating a UI that
displayed AI outputs with graphical and textual
explanations. The explanations were expressed in gaming
language and translated to a military language to test
transferability of the technique to C2 environments. Our
usability study (see Section 6) then highlighted the areas
that the users (players) thought would best inform their
decision making. Descriptions of these are found in the
following sections.

5.1​ USER INTERFACE

The User interface is segmented into three primary
views: Player view, AI Vision, and Opponent’s Predicted
Strategy. Each segment provides distinct functionalities
essential to enhancing strategic planning and decision
making.

Player View: This segment serves as the live link between
the ongoing gameplay and the user interface, displaying
real-time information to the player, see Figure 6. It has
the flexibility to be hidden, allowing the player to focus
on the AI output.

Figure 6. Player’s minimap, showing what is normally the
player’s view of the game and fog of war(areas in dark

grey are unexplored, areas light grey reflect those where
“scouts” have been but which are no longer within sight

range of the player’s units)
AI Vision: The AI Vision section is a crucial overview

of the game environment, predicting enemy
location and unit counts, in order to aid players in
resource allocation and tactical planning. It
incorporates several key elements (see Figure 7):

●​ Enemy Location Prediction: estimated
positions of opponent units output by the
defogger model.

●​ Confidence Level: indicates the certainty of
the defogger model’s predictions of opponent
units.

●​ Ground Truth: Displays true positions of

ICCRTS 2021​ 15

enemy units, to validate AI predictions.
●​ Predicted Unit Count: Offers an estimate of

the total number of opponent units across the
whole map, as output by the defogger model.

Figure 7. Screenshot of the UI showing opponent’s units

through the fog of war as predicted by the defogger
model, prediction confidence levels, and total predicted

unit counts across the map.
Opponent’s Predicted Strategy: This segment focuses on
anticipating the opponent’s future moves and strategies,
see Figure 8.

●​ Prediction and Tactics: Prediction of the most
likely opponent strategy from the simplified
strategy classifier model, and suggestions of
their likely tactics based on this strategy.

●​ Prediction Timeline: Line graph showing the
predicted probability of each opponent
strategy over time.

Figure 8 Screenshot of the UI showing strategy prediction,
description of strategy and strategy prediction timeline.

●​ Explainability: Provides insights into the
rationale behind opponent strategy
predictions, helping players understand and
trust the AI's strategic assessments, based on

feature values, see Figure 9. We did not
include SHAP-related language to reduce the
knowledge barrier for new users.

Figure 9 Screenshot of the UI showing user-centric
explainability of the opponent strategy prediction

The interface employs military language where possible,
to ensure clarity and precision, aligning with the
terminology familiar to the C2 user base. Additionally, an
information-hover feature allows users to obtain detailed
descriptions of various elements by hovering over the
mouse over them, facilitating a deeper understanding
without cluttering the interface. The combination of the
segmentation of the UI and detailed functionality
enhance the strategic depth and user engagement with
the application.

6​ USER FEEDBACK ON AI-DECISION SUPPORT SYSTEMS

Critically evaluating AI-based systems and user interfaces,
and their usability and level of trust in the context of
decision support is important in informing future
interface design. We therefore carried out a user
feedback study to assess the system developed as part of
this project.

The study protocol is laid out in Annex B, Figure 12. The
main research questions we wanted to address using
user feedback were:

1.​ What effect does explanation have on users’
satisfaction and trust in the AI-decision support
system?

2.​ What type of explanation – textual or graphical -
is most useful for a positive effect on satisfaction
and trust?

The usability constructs were measured using the system
usability scale (SUS) questionnaire [29], and measures of
trust were adapted from a ‘cruise control’ system

16​ ​ ICCRTS 2021

evaluation questionnaire Error! Reference source not
found.. To supplement the questionnaires, we conducted
a semi-structured interview to explore the transferability
of our tested models and interfaces to operational
planning, and to do a deeper dive on trust. The questions
can be found in Annex B.

Five video segments were chosen to highlight different
aspects of the AI model predictions and subsequently the
different user interfaces:

●​ Segment 1: from ‘pending’ (no strategy
prediction) to the first strategy prediction.

●​ Segment 2: determining confidence for first
prediction of an ‘Armoured Warfare’ strategy of
approx. 40%.

●​ Segment 3: increasing confidence in the first
prediction of an ‘Armoured Warfare’ strategy
from 70% to 90+%.

●​ Segment 4: switching between ‘Armoured
Warfare’ and ‘Air Dominance’ strategy
predictions, where both wavered around 50%.

●​ Segment 5: establishing confidence for ‘Air’
strategy prediction from 60% to 90+%.

6.1 BACKGROUND QUESTIONNAIRE RESULTS

The background questionnaire was provided before the
users began providing feedback on the system. In total,
10 users provided feedback, with varied experience
playing SC2. All users considered themselves to be either
experts (7 people) or somewhat experts (3 people) at
computer games and all users had experience playing
real-time strategy games.

6.2 USABILITY AND TRUST QUESTIONNAIRE RESULTS

System Usability Scale

The System usability scale (SUS) [30] is one of the most
used and well-known scales for assessing usefulness of a
UI in UX research. With high reliability and validity, the
SUS consists of a series of 10 Likert-scale statements that
produce a score between 0 and 100 (100: most useful
and 0: not useful at all). Using this score, we can get a
single numerical value that summarises the perceived
usefulness of a given UI.

Overall SUS scores: Using a threshold of 60 to mark
“useful” amongst the SUS scores (Figure 10), the
graphical and control UIs were seen as useful in time
segments 2 and 4, where the confidence is determined
for the ‘Armoured Warfare’ strategy prediction and the
prediction switched from this to the ‘Air Dominance’

strategy. Interestingly, although the text UI appeared
least useful when categorized by positive and negative
statements, it appeared more useful than the control and
graphical UI in both time segment 3 and 5, where there is
an increase in the confidence in the ‘Armoured Warfare’
prediction from 70 to over 90% and establishing
confidence for the ‘Air Dominance’ prediction.

Figure 10 . System usability scores over each time
segment for each stimulus. Note: * indicates a statistically

significant (p<0.05) result between two stimuli using a
dependent t-test.

Trust Assessment

To assess trust, we used a validated subjective metric
that was short and generalisable. The authors in [31]
noted that trust can be narrowed in scope from a general
overarching theme of trust to reliability, predictability,
and efficiency. We modified their original trust scale
(used to assess trust of vehicles with cruise control
systems) to match that of a gameplay task. We
interpreted scoring as ‘the higher the summed value of
the four Likert questions, the more the user trusted the
system’.

Predictability: All three UIs were similarly and
consistently rated for predictability (except for time
segment 1 where the control UI was slightly more
predictable).

Reliability: The graphical UI consistently had ratings
above 3 for each segment. The control UI had started off
with similar reliability ratings to the graphical UI, but
scores decreased steadily as each time segment went on,
e.g. to an average rating of 2.1 for time segment 4.

Efficiency: The graph UI received the highest average
scores for all time segments. However, in general, none
of the UIs were considered efficient for playing SC2,
understandably due to lack of integration with the game.

ICCRTS 2021​ 17

Trust (overall): The control UI was rated as being the least
trustworthy UI, even though it was the simplest. Both the
graph and the text UI were rated as more trusted, with
the graph UI having ratings above 3 throughout.

6.3 SEMI-STRUCTURED INTERVIEW RESULTS

A semi-structured interview is a qualitative research
method with a pre-determined set of open questions and
with opportunities for the interviewer to explore specific
themes or responses further [32]. The interview topics
covered feedback on the different types of user
interfaces, whether accuracy influences trust in AI, and
transferability of the AI models and user interfaces to
operational planning. The questions are listed in Annex B.

We analysed the interview transcripts using thematic
analysis supplemented by an LLM (a local version of
GPT4o), and validated by a human. We based our
thematic analysis methodology on two papers [33][34],
picking the results which best grouped feedback while
reflecting the nuances of different users. The following
themes emerged:

Feedback on user interfaces. In accordance with the SUS
analysis, the majority of users preferred the graphical UI
for its quick readability and efficiency of information
delivery, especially in fast-paced gaming scenarios. Some
users also liked the minimalist control interface with no
explainability components, highlighting the balance
between providing useful information and overwhelming
users with too much text. Users commented that the UI
would be more useful as a tool to review their gameplay,
rather than for real-time decision making.

Perceived trust influenced by overall model accuracy
and usefulness. Trust is closely tied to how useful the
information being provided is, and strongly informed by
lived experience of using the model. A single statement
or statistic provided to the user (e.g. “the model is 68%
or 88% accurate overall”), did not significantly change
trust perceptions. If the user believed that the model was
usefully predicting future events, then they were more
likely to trust the system and base their decisions on it.

Trust in AI for use in real-world applications. Users agree
on the potential of AI but remained cautious, especially
in high-stakes situations. They expressed reservations
about fully trusting AI, preferring it as a supplementary
information source rather than a primary
decision-making tool. Users do not want to be told
exactly what to do, but instead be provided with either a
summary report or predictive information to enhance
their situational awareness while retaining autonomy
over decision-making.

Personalisation. Users mentioned that the user

interfaces would benefit from personalisation along the
dimensions of player skill level, expertise, and game
progress. For example, actionable insights (based on the
assumption of the highest confidence strategy) would
benefit novice users; while expert users would prefer
seeing all possible predicted opponent strategies,
however unlikely, to mitigate risks. This is because
higher-level users expected deception by their
opponents, drew on more sources of information to
make their decisions, and had the cognitive capacity to
deal with low-probability events.

7​ CONCLUSIONS AND RECOMMENDATIONS

In this paper, we have used the commercial video game
SC2 as a medium for simulating battle environments to
advance AI research relevant to military C2 operations.
We have taken a human-centric approach to AI
development, understanding what a user (or in this case
a player) would want to get from an AI to assist and
augment their decision making.

We developed two AI approaches to meet user technical
requirements: (i) piercing the fog of war to infer an
opponent’s assets’ locations and (ii) opponent strategy
detection and strategy changes over time.

We assumed that the human (player) did not have
technical knowledge of AI and therefore considered their
needs for understanding of AI and AI outputs for decision
making.

Finally, we also used the gaming environment as a
simulation medium for human-AI interaction. We
explored through a usability study what humans (players)
thought of the information provided, and their feedback
on the usability of the display of graphical and textual
explanations.

In conclusion, our project provides the following benefits
for advancing military research:

●​ A user-centric approach. AI is not developed
in isolation. Insights on user needs for
information and functionality need to be
understood in order to develop the right AI
solution. A user-centric approach should be
applied to real military projects in order to
direct resources towards the most valuable
developments of AI.

●​ Piercing the fog of war. Military operations
and planning at operational and tactical level
encounter the challenge of partial information
for decision making. Our approach illustrates
how AI could aid this challenge with a
“defogger” approach that ingests a huge
amount of historical data and trends in order

18​ ​ ICCRTS 2021

to nowcast what might be happening on the
situation at hand.

●​ Narrowing down key features for
characterising opponents’ movements and
behaviours. The distilled AI classifier could
perform with only the top 15 most important
features for strategy classification. This has
huge value for military intelligence in
situations in which it is difficult to focus on
the vast amounts of varied information. By
narrowing down to key features for a
particular set of events that define, for
example, a strategy, the data used and the
speed of insight generation can be optimised
and delivered faster to the decision maker.

●​ Flexible user-centric explainability
framework. Explainability of AI is one of the
most looked for AI developments. Non-AI
experts and AI users need to understand and
trust the outputs of an AI agent. In our
project, we focused on one of the most
evolved explainability techniques, SHAP, to
detect feature importance for the output of
the classifier. We explored what type of
explanations would be most useful to the user
and how to translate the outputs of SHAP into
a language that could be understood. This is,
and will be, a key element for any
implementation of AI within the military
environment, where it is crucial that military
experts can understand and base their
decisions on information with confidence.

●​ Human-AI interactions. Human-AI
interactions are becoming extremely
important, as AI will likely be deployed as part
of a socio-technical environment (within a
team, within a unit, etc.). Our approach to
explain and display information in a way and
language that is easy for the user to absorb,
within a user interface that is tailored to the
task, is also beneficial to consider when
deploying solutions in a military context. This
makes the output of the AI development
useful and valuable to the user, allowing it to
be effectively incorporate this into their
decision making.

●​ User feedback and feedback loops. User
feedback and feedback loops are also
essential to refine and develop effective
human-AI interactions. We developed a
usability study that looked at :i) SUS scores
through structured questionnaires and ii) in

depth interviews for qualitative insights. This
provided us with valuable insights that would
feed back into our design.

In conclusion, recommendations of further work include:

1.​ Push the technology closer to real-world military
applications: (i) move from gaming simulation
environments to more realistic simulators (ii)
address data volume and quality issues inherent
in realistic applications.

2.​ Expand Human-AI interaction research and
development within military contexts: explore
human-AI interfaces, communication channels
and interactions that include different ways of
communicating AI insights to military users.

3.​ Build user trust for fast implementation and
uptake of AI solutions for C2: (i) implement
user-centric explainability frameworks (ii) build
user trust for fast implementation of AI solutions
for C2 decision making. Insights on usability, trust
and personalisation where extremely valuable to
assess how our explanations and UI could be
refined.

8​ ACKNOWLEDGEMENTS

The research reported on in this paper was funded by the
UK MOD Machine Speed Command and Control (MSC2)
project. This project was part of the UK Defence Science
and Technology Laboratory's (Dstl) AI Programme with
the intent to transform C2 by enabling more `timely and
effective C2 processes across all environments, domains
and levels of command, so the Defence enterprise can
anticipate and adapt more successfully than adversaries.

This paper is one of six presented at the 29th ICCRTS
which document different aspects of the MSC2 project
which explored the feasibility of a Human Agent
Collective (HAC) that combines human insight with
machine speed AI agents employing shared digital
artefacts, shifting C2 from human teams to
human-machine teams, where humans and AI work
together. We would like to thank Dr. Stephen Helsdon
and Dr. Martyn Fletcher for their invaluable direction and
feedback.

9​ REFERENCES

[1]​ Tsavdaridis, G., Koukoutsis, E. and Karadimas,
N.V., 2019, December. Techniques Handling
Operational Information During Military Decision
Making Process. In 2019 3rd European
Conference on Electrical Engineering and
Computer Science (EECS) (pp. 117-122). IEEE.

ICCRTS 2021​ 19

[2]​ Bjola, C., 2022. Artificial Intelligence and
Diplomatic Crisis Management: Addressing the
“Fog of War” Problem. VALENTIN NAUMESCU
RALUCA MOLDOVAN, p.25.

[3]​ Tryhorn, D.N., 2021. Exploring Fog of War
Concepts in Wargame Scenarios.

[4]​ Randall, P., S., 2015, Strategy and the role of the
enemy, Infinity Journal, Volume 4, Issue 3, pages
28-32

[5]​ Nashed, S. and Zilberstein, S., 2022. A survey of
opponent modeling in adversarial domains.
Journal of Artificial Intelligence Research, 73,
pp.277-327.

[6]​ Arrieta, A.B., Díaz-Rodríguez, N., Del Ser, J.,
Bennetot, A., Tabik, S., Barbado, A., García, S.,
Gil-López, S., Molina, D., Benjamins, R. and
Chatila, R., 2020. Explainable Artificial
Intelligence (XAI): Concepts, taxonomies,
opportunities and challenges toward responsible
AI. Information fusion, 58, pp.82-115.

[7]​ Liao, Q.V. and Varshney, K.R., 2021.
Human-centered explainable ai (xai): From
algorithms to user experiences. arXiv preprint
arXiv:2110.10790.

[8]​ Springer, A. and Whittaker, S., 2019. Making
transparency clear. In Algorithmic Transparency
for Emerging Technologies Workshop (Vol. 5).

[9]​ Liao, Q.V. and Varshney, K.R., 2021.
Human-centered explainable ai (xai): From
algorithms to user experiences. arXiv preprint
arXiv:2110.10790.

[10]​Futia, G. and Vetrò, A., 2020. On the integration
of knowledge graphs into deep learning models
for a more comprehensible AI—Three challenges
for future research. Information, 11(2), p.122.

[11]​Vinyals, O., Babuschkin, I., Czarnecki, W.M.,
Mathieu, M., Dudzik, A., Chung, J., Choi, D.H.,
Powell, R., Ewalds, T., Georgiev, P. and Oh, J.,
2019. Grandmaster level in StarCraft II using
multi-agent reinforcement learning. Nature,
575(7782), pp.350-354.

[12]​Gehring, J., Ju, D., Mella, V., Gant, D., Usunier, N.
and Synnaeve, G., 2018. High-level strategy
selection under partial observability in starcraft:
Brood war. arXiv preprint arXiv:1811.08568.

[13]​Synnaeve, G., Lin, Z., Gehring, J., Gant, D., Mella,
V., Khalidov, V., Carion, N. and Usunier, N., 2018.
Forward modeling for partial observation

strategy games-a starcraft defogger. Advances in
Neural Information Processing Systems, 31.

[14]​Jeong, Y., Choi, H., Kim, B. and Gwon, Y., 2020,
April. Defoggan: Predicting hidden information in
the starcraft fog of war with generative
adversarial nets. In Proceedings of the AAAI
Conference on Artificial Intelligence (Vol. 34, No.
04, pp. 4296-4303).

[15]​https://develop.battle.net/documentation/starcr
aft-2/game-data-api

[16]​Ronneberger, O., Fischer, P. and Brox, T., 2015.
U-net: Convolutional networks for biomedical
image segmentation. In Medical image
computing and computer-assisted
intervention–MICCAI 2015: 18th international
conference, Munich, Germany, October 5-9,
2015, proceedings, part III 18 (pp. 234-241).
Springer International Publishing.

[17]​ https://pytorch.org/

[18]​Hochreiter, S. and Schmidhuber, J., 1997. Long
short-term memory. Neural computation, 9(8),
pp.1735-1780.

[19]​Smith, L.N. and Topin, N., 2019, May.
Super-convergence: Very fast training of neural
networks using large learning rates. In Artificial
intelligence and machine learning for
multi-domain operations applications (Vol.
11006, pp. 369-386). SPIE.

[20]​Smith, L.N., 2018. A disciplined approach to
neural network hyper-parameters: Part
1--learning rate, batch size, momentum, and
weight decay. arXiv preprint arXiv:1803.09820.

[21]​Seitzer, M., Tavakoli, A., Antic, D. and Martius, G.,
2022. On the pitfalls of heteroscedastic
uncertainty estimation with probabilistic neural
networks. arXiv preprint arXiv:2203.09168.

[22]​Clevert, D.A., Unterthiner, T. and Hochreiter, S.,
2015. Fast and accurate deep network learning
by exponential linear units (elus). arXiv preprint
arXiv:1511.07289.

[23]​Kingma, D.P. and Ba, J., 2014. Adam: A method
for stochastic optimization. arXiv preprint
arXiv:1412.6980.

[24]​Hinton, G., Vinyals, O. and Dean, J., 2015.
Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531.

[25]​Lundberg, S.M. and Lee, S.I., 2017. A unified

20​ ​ ICCRTS 2021

https://develop.battle.net/documentation/starcraft-2/game-data-api
https://develop.battle.net/documentation/starcraft-2/game-data-api
https://pytorch.org/

approach to interpreting model predictions.
Advances in neural information processing
systems, 30.

[26]​Atanasova, P., 2024. A diagnostic study of
explainability techniques for text classification. In
Accountable and Explainable Methods for
Complex Reasoning over Text (pp. 155-187).
Cham: Springer Nature Switzerland.

[27]​Gurrapu, S., Kulkarni, A., Huang, L., Lourentzou, I.
and Batarseh, F.A., 2023. Rationalization for
explainable nlp: A survey. Frontiers in Artificial
Intelligence, 6.

[28]​Miller, T., 2019. Explanation in artificial
intelligence: Insights from the social sciences.
Artificial intelligence, 267, pp.1-38.

[29]​Coppers, S., Van den Bergh, J., Luyten, K., Coninx,
K., Van der Lek-Ciudin, I., Vanallemeersch, T. and
Vandeghinste, V., 2018, April. Intellingo: An
intelligible translation environment. In
Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems (pp. 1-13).

[30]​Brooke, J.B. (1996). SUS: A 'Quick and Dirty'
Usability Scale.

[31]​Cahour, B. and Forzy, J.F., 2009. Does projection
into use improve trust and exploration? An
example with a cruise control system. Safety
science, 47(9), pp.1260-1270.

[32]​Jamshed, S. (2014). Qualitative research
method-interviewing and observation. Journal of
basic and clinical pharmacy, 5(4),87.

[33]​De Paoli, S., 2023. Performing an Inductive
Thematic Analysis of Semi-Structured Interviews
With a Large Language Model: An Exploration
and Provocation on the Limits of the Approach.
Social Science Computer Review,
p.08944393231220483.

[34]​Dai, S.C., Xiong, A. and Ku, L.W., 2023.
LLM-in-the-loop: Leveraging large language
model for thematic analysis. arXiv preprint
arXiv:2310.15100.

ICCRTS 2021​ 21

Annex A – Defogger training
details

10​ DEFOGGER HYPERPARAMETERS

The full sets of hyperparameters used for training the
final defogger models are shown in Table 1.

Hyperparameter
name

Description Standard
model
value

Confidence
model value

Batch size Number of
game
sequences per
minibatch

128 128

Sequence length Number of
frames per input
sequence

1 (see
limitations)

1 (see
limitations)

Number of
batches trained

Total number of
training steps

99,000
(approx.
200
epochs)

150,000
(approx. 300
epochs)

Initial learning
rate

Learning rate at
start of training

0.0005 0.001

Peak learning
rate

Max learning
rate during
training

0.005 0.005

Peak learning
rate position

Fraction of the
way through
training that the
peak learning
rate occurs

0.3 0.2

Mining loss scale Scale factor for
mining
prediction loss
term () α

0

0.01 0.01

Auxiliary global
unit loss scale

Scale factor for
the auxiliary
global unit
count prediction
loss term () α

1

2x10-5 2x10-5

Opponent unit
loss scale

The unit
prediction loss
for opponent
units is scaled
up by this factor
compared to
the loss for
friendly units

1.0 10.0

Gradient clip
value

All gradients
are clipped to
+/- this value for
stability
purposes

0.1 0.1

Minimum
variance

Minimum
allowed value
for total output
variance

N/A 0.0001

Friendly unit
count variance

The variance
used for friendly
unit counts in
the loss formula
(not learned)

N/A 0.0001

Table 1. Final training hyperparameters

11​ DEFOGGER PERFORMANCE METRICS

Performance metrics

A number of metrics were used to assess different
aspects of the model’s performance, given its
multi-faceted output. These can be divided into a set of
categories as follows:

●​ Intersection over Union (IoU) – spatial
performance metric assessing how well
predicted unit locations match the ground
truth:

o​ Player unit loU – Average IoU over all player
unit types

o​ Opponent unit IoU - Average IoU over all
opponent unit types

o​ Opponent visible unit IoU – IoU only of the
opponent’s visible units

o​ Opponent hidden unit IoU – IoU only of the
opponent’s hidden units

o​ Mining IoU – IoU of mining locations (i.e.
locations of Command Centres, Orbital
Commands and Planetary Fortresses)

o​ Mining visible IoU – IoU only of mining
locations in visible regions of the map

o​ Mining hidden IoU – IoU only of mining
locations in hidden regions of the map

●​ Unit count error – root mean squared error
(RMSE) in the predicted count across all unit
types:

o​ Player unit count error – RMSE of the unit
count for the player’s units

●.o.●.1​ Spatial – Player unit count error for the
spatial unit prediction head

●.o.●.2​ Non-spatial - Player unit count error for
the non-spatial unit prediction head

o​ Opponent unit count error
●.o.●.1​ Spatial – Opponent unit count error for

the spatial unit prediction head
●.o.●.2​ Non-spatial - Opponent unit count error

for the non-spatial unit prediction head

12​ DEFOGGER BASELINES

The baseline models used alongside the defogger model
were as follows:

22​ ​ ICCRTS 2021

●​ Zero – lower-limit baseline which returns
zeros in all outputs, i.e. no predicted units or
mining locations, ignoring all input. This
baseline is useful to show that the model is
making any correct predictions, including of
known information.

●​ Return - returns the most recent game frame
as the output, i.e. a direct copy of the input
unit type counts and locations The locations
of any opponent Command Centres (including
snapshots) in this unit count are returned as
mining locations.This baseline is useful for
checking that the model is predicting known
information correctly.

●​ Sum - sums the input data over all input game
frames and normalises over the input frame
count. The mean unit count for each unit type
over all input frames is therefore returned.
The locations of any opponent Command
Centres (including snapshots) in this mean
unit count are returned as mining locations.
This baseline therefore represents a very
simple use of all frames in the input
sequence.

●​ Average - finds the average number of units
of each type across the input frames and
returns the last position of the units present
for the longest up to that average count. The
locations of any opponent Command Centres
(including snapshots) in this average unit
count are returned as mining locations. This
baseline represents a slightly more intelligent
method of making use of the full input
sequence.

●​ Last-known Positions (LKP) - attempts to
track unit units’ movements by associating
unit positions frame-to-frame. Returns the
last known position of each unit, unless it
appears to have been destroyed – units which
entered the fog of war are kept. The locations
of any opponent Command Centres (including
snapshots) in this unit count are returned as
mining locations. This baseline represents a
variation on making use of the full input
sequence.

●​ Reflect the Player - reflects the unit types and
positions of the player across the map
according to the symmetry of the map, taking
into account observed enemy units. Visible
opponent units are returned as observed and
subtracted from the total count of the same
type to be mirrored. Units which would be

mirrored into visibly empty areas are returned
at the nearest non-visible location. The
locations of any opponent Command Centres
(including snapshots) in this mirrored unit
count are returned as mining locations. This
baseline is based on the assumption that
players carry out similar actions at similar
times during the game.

13​ ADDITIONAL DEFOGGER RESULTS

Figure 11 IOU opponent visible

Figure 12 IOU opponent hidden

ICCRTS 2021​ 23

Annex B- User feedback
study on AI-decision support

systems
Graphics explaining:

Figure 15. User Questionnaires

13.1​ INTERVIEW QUESTIONS

General feedback

●​ Among the 3 UIs you saw today, which was your

most preferred? Why?

●​ How could your most preferred UI be improved,
e.g. by combining it all in a single UI?

Deeper dive into trust given 2 levels of accuracy data

●​ Overall, “From a scale of 1-5, what was your
feeling of trust in the model?” Please explain the
reasoning for your given rating.

●​ I’ll now give you some additional information on
the model’s accuracy. Throughout the game, it
was approximately 88% (or 68%) accurate in

predicting the right strategy. How does this
information change your perception of the model
change?

●​ Unsupervised approach to get clusters ◊ Labelled

by hand using domain experts (ground

truth) ◊ Fed into classifier (this is what accuracy

refers to)

●​ Finally, “From a scale of 1-5, what was your
feeling of trust in the model?” Please explain the
reasoning for your given rating.

24​ ​ ICCRTS 2021

Transferability to operational planning

●​ Now, I want you to think outside of StarCraft II
about the transferability of the model. Imagine
you have access to a similar model for evacuation
of non-military personnel from a dangerous
evolving situation.

●​ Would you trust a model like this to help you
make decisions in [scenario]? Why or why not?

●​ What would you want to see in a User Interface
to help you make decisions around [scenario]?

ICCRTS 2021​ 25

	29th International Command and Control Research and Technology Symposium, 24th-26th London, UK
	
	Topic 5: Non-Human ‘Intelligent’ Collaboration and Autonomous Systems
	
	AI techniques in Gaming for C2. Strategy detection, explainability and usability in StarCraft II
	1​BACKGROUND
	1.1​AIMS OF THE RESEARCH
	1.1.1​Exploring the challenge of user-centric AI explainability for human augmentation of decision making
	1.1.2​Exploring the challenge of partial information to infer opponents’ positions.
	1.1.3​Exploring the challenge of extracting key features for opponent strategy detection

	2​USER-CENTRIC APPROACH TO AUGMENT THE USER DECISION MAKING: A USER-CENTRIC EXPLAINABILITY FRAMEWORK
	2.1​USER-CENTRIC EXPLAINABILITY FRAMEWORK

	3​AI FOR INFERRING OPPONENTS’ POSITIONS FROM PARTIAL INFORMATION
	3.1​PREVIOUS WORK
	3.2​DATA SETS AND DATA EXTRACTION
	3.3​MODEL ARCHITECTURE
	3.4​DEFOGGER TRAINING APPROACH
	3.5​CONFIDENCE-AWARE DEFOGGER MODELS
	3.6​PERFORMANCE RESULTS

	4​AI FOR DETECTING OPPONENT’S STRATEGIES
	4.1​DATASET
	4.2​INPUT FEATURES
	4.3​UNSUPERVISED CLUSTERING OF STRATEGIES
	4.4​SUPERVISED CLASSIFICATION OF STRATEGIES
	4.5​CREATING A SIMPLIFIED CLASSIFIER
	4.6​EXPLAINABILITY WITH SHAPLEY ADDITIVE EXPLANATIONS
	4.7​PERFORMANCE USING DEFOGGER OUTPUTS

	5​THE “BRIDGE” TO PROVIDE THE RIGHT INFORMATION AND THE RIGHT EXPLANATION
	5.1​USER INTERFACE

	6​USER FEEDBACK ON AI-DECISION SUPPORT SYSTEMS
	7​CONCLUSIONS AND RECOMMENDATIONS
	8​ACKNOWLEDGEMENTS
	9​REFERENCES
	10​DEFOGGER HYPERPARAMETERS
	11​DEFOGGER PERFORMANCE METRICS
	12​DEFOGGER BASELINES
	13​ADDITIONAL DEFOGGER RESULTS
	13.1​INTERVIEW QUESTIONS

