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Abstract 

Video games are an ideal type of simulation environment to create and test new AI developments, as they provide a controllable 

set of variables and baselines to test results against, and data availability to explore, therefore offering a rapid turnaround on 

finding which technique is most valuable and has most potential for real-world applications. 

As part of the Machine Speed C2 (MSC2) programme run by the UK Defense, Science and Technology laboratory (Dstl), our project 

explores: (i) piercing the ‘fog of war’ to infer opponents’ positions and (ii) investigating key elements for detecting opponent’s 

strategy within the game StarCraft II. As with real-world C2, this is a complex game in which a player must make decisions with 

partial information available in order to defeat an opponent.  Our goal consisted of developing two AI assistants to augment a 

human player’s decision making by: 1) developing an encoder-decoder neural network architecture to enable nowcasting likely 

locations of enemy units through the fog of war with an associated confidence level 2) using unsupervised techniques (clustering) 

and supervised techniques (a neural network classifier) to classify strategies with confidence and probabilistic metrics 3) creating 

a user-centric explainability framework that translates technical outputs into visual and text explanations based on user-centric 

understanding 4) performing a usability study to determine which method of communicating the AI outputs is more valuable to 

non-expert users.  

Details and conclusions of this study are presented with recommendations as to how to use the learnings of this project within a 

C2 environment. 

Keywords: fog of war, strategy detection, explainability 
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1​ BACKGROUND 

Within this paper, we demonstrate the value of artificial 
intelligence (AI) research for military C2 using the 
commercial video game StarCraft II (SC2). We have 
focused our research on how we can use gaming as a 
type of simulation environment to progress development 
of AI techniques, and how this might help enable further 
research within C2. Our approach to this project has been 
to use the gaming environment not to create yet another 
AI super player, but to create AI agents that can assist and 
augment the human player’s insights into opponents’ 
locations and strategies, to inform the player’s decision 
making. 

The importance of the gaming industry for the 
development and study of AI algorithms is undeniable. 
Large proportions of video games involve strategic 
decision making, optimization processes or competition, 
which make up fertile exploration grounds for AI, and 
many games accumulate the large amounts of data 
required for advance machine learning techniques such 
as deep learning. For these reasons, AI researchers are 
making significant use of video games as training 
environments and benchmarks. These games have a wide 
range of features and attributes that create challenged 
for AI research, spawning many new algorithms in the 
last decade.  

A significant amount of AI research has made use of the 
game (SC2), a science-fiction-themed real-time strategy 
(RTS) video game. Released in 2010, SC2 is one of the 
most popular RTS games ever made, with over 6 million 
copies sold. It is a popular e-sports game, typically played 
in 1v1 matches online.  

The game’s developer, Blizzard Entertainment, have made 
available an application programming interface (API) for 
extracting data from the game and enabling AI agents to 
interact with it, along with a large dataset of recorded 
games played by human players on the game’s 
competitive ladder. This has facilitated a huge amount of 
research and AI development.  

1.1​ AIMS OF THE RESEARCH 

There are significant challenges facing the development 
and transformation of C2 operations going forwards, 
from a technical perspective, a human perspective, and 
interactions between humans and AI agents. 

The overall environment within which the future C2 
concepts are being built will constitute a HAC 
(human/agent collective), which could take many forms. 
For example, AI agents could perform tasks 
autonomously, the outputs of which could then be used 

by human to improve their analysis or decision making; 
humans performing tasks could work together with AI 
agents to deliver key outcomes; and there are tasks and 
roles that might include inputs/outputs and 
collaborations between humans and AI agents. 

This undertaking is ambitious. Video games can play an 
important part by providing a simulation testbed for 
some of these elements within different future C2 
concepts. Games resemble formalized, if simplified, 
models of reality, and by solving problems in these 
environments we can learn how to solve analogous 
problems in reality.  

In this study we focused on three main areas of research: 

1.1.1​ Exploring the challenge of user-centric AI 
explainability for human augmentation of 
decision making 

The inability to explain or to fully understand the reasons 
why AI algorithms perform as they do is a real problem 
for practical implementation and trust. The gap between 
the research community and business sectors has been 
impeding the full penetration of the newest ML models in 
sectors that have traditionally lagged behind in the digital 
transformation of their processes [6]. This is even more 
important in military contexts in which it will be essential 
for C2 users in operations and warfare to understand, 
appropriately trust, and effectively manage an emerging 
generation of artificially intelligent machine partners. For 
example, an intelligence analyst who receives 
recommendations from a bigdata analytics system needs 
to understand why it recommended certain activity for 
further investigation. Similarly, an operator who tasks an 
autonomous system needs to understand the system's 
decision-making model to appropriately use it in future 
missions. 

In section 2, we describe how we addressed these issues. 

1.1.2​ Exploring the challenge of partial information to 
infer opponents’ positions. 

To design and execute operational procedures, a military 
expert needs specific operational information, which 
influences (positively or negatively) all phases of a 
mission. One common challenge when gathering 
information about a mission is information gaps, due to 
missing components of operational information which 
can be of crucial importance, preventing experts from 
making correct assessments. Another important 
challenge is dynamic information, with factors rapidly 
changing over time and information becoming out of 
date, and therefore constantly needing to be updated [1]. 
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In classic military terms, the ‘fog of war’ refers to the 
diminished level of accuracy and reliability of information 
exchanged in times of war, and the difficulties 
encountered by political and military leaders when 
seeking to compensate for this limitation and maximize 
the value of the data used for taking decisions [2]. 

Methods by which fog of war are typically included in 
real-time strategy video games such as SC2 include the 
obscuration of information relating to areas which are 
unexplored or not within sight range of the player’s base 
and troops (typically including the area around the 
enemy base), enemy assets, troop locations and 
unknown terrain. Fog of war mechanics make only 
limited portions of the map viewable. Unit movement 
shifts these viewable zones and causes previously visited 
areas to fade out of sight. Progression requires an 
eventual confrontation with whatever lies in the 
surrounding fog, forcing players to think strategically 
about preparing for these unknowns [3]. 

Within our project, we investigated how to use 
information on the full current state of the game based 
on historical data and the current known portion of the 
game state, to create an AI agent that nowcasts a 
prediction of the full game state, indicating what most 
likely lies behind the fog of war. To assess these outputs, 
we also developed a methodology to estimate 
confidence levels on these outputs. These aspects of the 
project are described in Section 3. 

1.1.3​ Exploring the challenge of extracting key features 
for opponent strategy detection 

Strategic thinking is greatly concerned with the 
consideration of one’s own ends, ways, and means. This 
is a necessary component of strategic analysis, and it can 
only be achieved if ways, and means are considered with 
relation to the enemy, as strategy is necessarily 
adversarial [4]. Different enemies present different 
challenges, different ends, different rationalities to 
conceive of these ends, and differing levels of 
commitment to these ends; different strategic ways in 
which they can operate, and different strategic cultures. 

Related to the above, opponent-modeling research uses 
data gathered from past experience, or even online, to 
complete or refine models of opponent behavior. 
Observation of the enemy’s ways can offer the 
opportunity to learn about the enemy’s assumptions [4]. 

Recent advances in tracking technology and both 
supervised and unsupervised machine learning, coupled 
with the clear need to move beyond the present 
limitations of model-based approaches, have given rise to 

a growing number of techniques for opponent modeling 
[5]. 

In our research, we have used both unsupervised and 
supervised machine learning to characterize and classify 
opponent strategies within a SC2 game in real time and 
changes of strategy over the timeframe of the game, 
based on streamlined key features that help to identify 
those strategies. These aspects of the project are 
described in section 4. 

2​ USER-CENTRIC APPROACH TO AUGMENT THE USER DECISION 
MAKING: A USER-CENTRIC EXPLAINABILITY FRAMEWORK 

As described in [9], it is becoming apparent within the 
research and innovation community that: 

●​ AI Explainability techniques (XAIs) have been 
developed by experts for experts. There is a 
disconnect between technical XAI approaches 
and supporting users’ end goals in usage contexts 
[7] and therefore, there is a need for new 
approaches. 

●​ Interpreting the outputs of XAIs for different 
users is extremely important. There is a 
disconnect between assumptions underlying 
technical approaches to XAI and people’s 
cognitive processes [7]. The user perspective is 
needed to provide enough information for 
understanding of and trust in AI tools. 

●​ Both the development of more user-focused XAIs 
and their interpretability for different uses and 
tasks is crucial for human-machine teaming to be 
successful. Potential inequalities of experience 
and understanding can lead to mistrust and 
misuse of AI [7]. 

New user-centric XAIs are starting to being explored such 
as knowledge graphs and neuro-symbolic XAIs [10], but 
there is a need to bridge the gap between current 
practices and user understanding. 

In this project, we created a framework that aims to 
bridge this current gap within our gaming task, whilst also 
pointing to future links with XAI development, social 
sciences and behavioral sciences, in order to create the 
right socio-technical solutions. 

2.1​ USER-CENTRIC EXPLAINABILITY FRAMEWORK 

Our user-centric approach aims to bridge the gap 
between current “expert-focused” approaches to AI 
development and AI explainability techniques (XAIs), and 
actual user needs, in order to allow them to understand 
the AI outputs and incorporate them into their decision 
making (Figure1).   
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Figure 1 Summarised User-centric explainability 
framework 

 
User understanding comes from different elements. 
Understanding the user goals and objectives, identifying 
where AI could add value, and their needs for using and 
understanding this tool should be at the centre of any 
consideration for AI development. The design and 
development of the AI tool needs to meet the 
requirements of the context of the application and tasks 
that the person will perform, but also how this tool will 
interact with the user (whether this is for assisting the 
user with information, teaming, cooperating, or 
performing an autonomous task that needs to be 
overseen). 

It is therefore essential to understand the user needs in 
terms of the information needed to interpret the AI 
outputs and use them with confidence and to their 
maximum value. In many cases, the user might not have 
any technical knowledge of AI tools, but still needs 
relevant and targeted information to decide on how to 
use that AI tool for decision making. Mental models are 
one of the approaches that have been explored, to make 
sense of the perceptions and beliefs of the user before 
exposing them to an AI tool, so that this tool can be 
designed to address and enhance the mental model of 
the user regarding the expectations of the AI and its use. 
We explored this approach during our project; however 
we did not implement it due to time constraints. 
However, we believe that this is one of the key 
approaches to explore going forwards to define what we 
mean by user needs and how these might change 
depending on initial beliefs. 

There is also a need to acknowledge that humans and AI 
interactions do not occur in isolation. The 
implementation of AI within different contexts implies 
the consideration of a socio-technical system where 
several users will interact with several AI tools and 

agents, explored within the MSC2 programme as the 
Human Agent Collective (HAC) for C2.  

Related to human-AI understanding, a huge amount of 
research is happening on the subject of AI explainability 
techniques (XAIs). However, the outputs of these 
techniques are normally very “expert” like, which require 
a huge amount of technical understanding of AI to be 
able to make sense of them. 

Human-AI interactions are a key element of research and 
development to deliver AI solutions, but are also thought 
out in a very mechanistic way and not very flexible or 
adaptable to different users within a HAC. 

To bridge this gap and deliver the right information in the 
right format for the user, within our project we 
considered: 

1)​ Who the users of the AI tool were:  

●​ We used a player of SC2 as a proxy for a decision 
maker for C2. The player needs to assess the 
situation of the game with limited information 
and hypothesize opponents’ locations and 
movements to make their own decisions on: (i) 
prioritisation of own resources for intelligence, 
surveillance, and reconnaissance (ISR) (ii) 
decision making on strategy and actions that can 
give them advantage in the game. 

2)​ What the user requirements for AI functionality 
were: 

●​  We assessed two functionality requirements 
within the game to address the user needs: (i) 
piercing the fog of war to infer opponents’ 
locations and (ii) classifying opponents’ strategy 
and changes in strategy over time. These two AI 
assistants give the player enough information to 
augment their decision-making capabilities.  

3)​ What the user requirements for AI explanations 
were: 

●​ We assumed the human (player) did not have 
technical knowledge of AI and therefore consider 
needs for understanding of AI and AI outputs for 
decision making. 

4)​ The socio-technical context within which the AI 
tool would be used was: 

●​ We took the gaming environment as a learning 
platform for human-AI interaction. We explored 
through a usability study how humans (players) 
would interact and use the information provided. 
We considered how to explore this further and 
learnings for C2 decision making. 
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The following sections will explain in detail how we 
addressed the above user needs. 

3​ AI FOR INFERRING OPPONENTS’ POSITIONS FROM PARTIAL 
INFORMATION  

3.1​ PREVIOUS WORK 

SC2 has been a popular platform for researchers to 
develop and demonstrate cutting edge AI systems. One 
of the most important AI developments leveraging SC2 is 
DeepMind’s AlphaStar [11]: a model trained using 
Reinforcement Learning to play SC2 to a level equivalent 
to top human professional players.  

Our work on hidden state estimation in SC2 builds on the 
existing body of work in this area using SC2 as well as its 
predecessor game StarCraft: Brood War. We leverage the 
SC2API software developed by DeepMind, and apply 
techniques inspired by work performed by teams at Meta 
[12][13], and Samsung [14], who developed AI 
approaches for estimating aspects of the game state 
hidden by the fog of war using a model we call a 
“defogger”, following [13]. 

3.2​ DATA SETS AND DATA EXTRACTION 

The dataset used in this work consists of 79,806 recorded 
games of SC2 (“replays”) played on the open ladder by 
human users on game versions 4.9.3 and 4.10.0. This 
data was sourced from Blizzard’s Game Data API [15]. 

Replay files do not contain full state data themselves, 
instead containing only basic metadata and the series of 
clicks made by the players to take actions in the game. 
State data was therefore extracted by using the SC2 API 
to run the replays with the SC2 game engine and save the 
full state for a given game frame. Each replay contains all 
data required to completely reconstruct the game from 
either player’s perspective. As the SC2 game engine is 
deterministic, re-running this extraction returns the same 
extracted data every time. 

As the SC2 ladder contains a wide variety of player 
skill level, we limit the data set to games between 
players with a minimum MMR (Matchmaking 
Rating, a measure of player skill) of 1000 and 
minimum actions per minute (APM) of 10; this 
eliminates a small fraction of players who 
perform poorly. The dataset therefore consisted 
only of games involving experienced and expert 
players, who make up the majority of the SC2 
ladder population. 

The dataset was also limited to games in which both 
players used the ‘Terran’ race – one of 3 races 
available in SC2. The Terran race is a human or 

human-like race with military units and structures 
which are more similar to real-world military 
assets than those of the other two (alien) races, 
albeit still having Science Fiction aspects due to 
the game’s setting. For this reason, games 
including the other two races (Zerg and Protoss) 
were excluded. 

Every 45th game frame was extracted – as the game 
typically runs at 22.5 frames per second, this lead 
to an extracted data rate of 1 frame every 2 
seconds. The dataset contains games the 
majority of which are  5 minutes to 60 minutes 
long, with a typical game lasting around 15 
minutes, i.e., around 450 extracted frames. The 
first 30s of each replay were discarded, as this 
period is essentially the same for all games on a 
given map. 

The dataset was split randomly into training, 
validation and test sets of full games, in the ratio 
of 80:10:10. The training split (63,844 games) was 
used to optimize the neural network parameters 
during training. The validation split (7,979 games) 
was used to measure performance during 
training. This measurement was in turn used to 
optimize network hyperparameters such as 
learning rate and model architecture. The test 
split (7,983 games) was used to compare model 
performance on data that was not used to 
optimize the network parameters or 
hyperparameters. Quantitative results shown 
later in this paper are calculated using this data 
split, to provide unbiased estimates of 
performance. For both training and evaluation, 
batches of sequences were randomly drawn from 
all periods of the game. 

3.3​ MODEL ARCHITECTURE 

For our ‘defogger’ model, we use a neural network 
architecture with an encoder-decoder design inspired by 
a the SC2 defogger model used in [13], and similar to the 
popular U-Net structure [16]. The model works similarly 
to an autoencoder: encoding the input into a 
lower-dimensional latent space – a model-defined 
projection space in which datapoints appear as vectors – 
then decoding it into the output space in which 
datapoints have our chosen output format. We add a 
recurrent temporal core between the encoder and the 
decoder, to allow the model to process multiple input 
frames to generate an embedding of both temporal and 
spatial information, as well as an auxiliary output head to 
generate non-spatial outputs and stabilize training. In 
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addition, following U-Net, we make use of 4 skip 
connections to allow spatial information to pass directly 
from the encoder to the decoder without passing 
through the core, making it easier for the model to utilize 
spatial information in the input. The model was 
implemented using the deep learning framework PyTorch 
[17]. A diagram of the overall architecture is shown in Fig. 
2. 

 

Figure 2. Diagram of the key components of the neural 
network architecture used in the ‘defogger’ model for 
predicting the full game state from the partial state. 

 

Model inputs 

The inputs to the ‘defogger’ model consisted of 87 spatial 
data channels consisting of 64 x 64 grid maps containing 
different information from the partial game state 
extracted from a single frame of an SC2 game. The data in 
each of the 87 channels was assigned as follows: 

●​ 1-40: Player unit counts for each of the 40 
Terran unit types (structures, vehicles and 
infantry), showing the number of friendly 
units of each type, present in each cell. 

●​ 41-80: (Partial) opponent unit counts for each 
of the 40 Terran unit types, showing the 
number of units of each type present in each 
cell. Only the counts for units that are visible 
to the player or for previously seen structures 
(in their last known locations) are included. 

●​ 81: ‘Blip’ counts for unclassified opponent 
units observed by a ‘Sensor Tower’ 
(essentially “radar blips”). This channel counts 
the number of blips in each grid cell. 

●​ 82-83: Resource levels for Vespene gas and 
Minerals (the two resources which the player 
can extract from the terrain) at each grid cell. 
This input only provides information on 
whether these resources are present on the 
map, not whether they are being extracted. 
All resource deposits are visible to the player 
from the start of the game, however if the 

opponent has extracted resources from a 
deposit not visible to the player, the input will 
still show the last-seen quantity of remaining 
resources (or the full quantity from the start 
of the game if it has not yet been observed at 
all). 

●​ 84: Map visibility: 1 if that grid cell is visible to 
friendly units, 0 if not visible. When part of a 
grid cell is visible, this value shows the 
fraction of the cell which is visible. 

●​ 85: Traversable regions of map: 1 if units are 
allowed to “walk” on that grid cell, 0 if the cell 
cannot be walked on (e.g., if it is part of a cliff 
or other obstacle). When part of a grid cell 
can be walked on, this value shows the 
fraction of the grid cell that can be walked on. 
This restriction only affects ground units: air 
units can traverse all grid cells. 

●​ 86: Map regions that can be built on: 1 if 
buildings can be constructed in that cell, 0 if 
they cannot. When part of a grid cell can be 
built on, this value shows the fraction of the 
cell that can be built on. 

●​ 87: Current game time as a count of how 
many game frames have elapsed since the 
start of the game (there are 22.5 of these per 
second of game time). As this is a single, 
global, non-spatial parameter, its value is the 
same in each grid cell, so the same value is 
repeated at every point in the 64x64 grid. The 
game time is input in this way to allow all 
inputs to be the same shape, and to allow the 
game time to be used by all cells in 
subsequent convolutions. 

 

Model outputs 

Similar to the model input, the model outputs the spatial 
distribution of 81 output channels on a 64x64 grid. These 
channels are not the same as the input channels, and 
contain the following: 

●​ 1-40: Predicted player unit counts per grid cell 
for the 40 Terran unit types for each cell 
(these should match the input channels 1-40, 
as this information is fully available to the 
model in the input). 

●​ 41-81: Full estimated opponent unit counts 
per grid cell for the 40 Terran unit types for 
each cell – this should accurately reproduce 
visible opponent units in the input, as well as 
predicted unit placements behind the fog of 
war. 
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●​ 81: Estimated likelihood that mineral mining is 
occurring at a Command Center/Orbital 
Command/Planetary Fortress in that cell 
(including locations behind the fog of war). 
This estimates the locations of enemy bases 
performing resource extraction. 

Additionally, the auxiliary output head produces a 
length-40 vector of non-spatial total unit counts for each 
opponent unit type across the entire map. 

 

Encoder 

The encoder is made up of a bank of 2D Convolution 
layers followed by a Linear layer, which compresses the 
87 64 x 64 spatial input channels into a set vectors of 
length 512 for each input frame. These vectors comprise 
global state embeddings which encode all the 
information derived from the map for that frame. 

Sigmoid linear unit (SiLU) activations introduce 
non-linearity after each layer. We apply Batch 
Normalization after each layer to improve training 
performance. Input sequences are processed as batch 
samples until the final layer, whereupon the tensor is 
reshaped to include a sequence dimension for input into 
the temporal core. Skip connections leave the encoder at 
each convolutional layer, to allow spatial information to 
“leak” to the decoder directly, which helps reconstruct 
spatial detail in the output map. 

Temporal core 

The temporal core was incorporated to provide a 
mechanism for the model to accumulate information 
from multiple input frames and provides it with 
“memory”. We use an LSTM (Long Short-Term Memory 
[18], as it is a standard approach for processing sequence 
data.  

Decoder 

The decoder transforms the spatiotemporal embedding 
output by the temporal core back into the spatial data 
which make up the output map, effectively doing the 
reverse of the encoder. This is done by reshaping this 
output latent vector into a spatial representation with a 
low resolution (8x8), then passing it through a series of 
transpose convolution layers to expand the 
dimensionality of the latent representation tensor up to 
the 64x64 output resolution. 

Prior to each transpose convolution layer, the 
intermediate latent representation tensor is combined 
with data from the skip connections originating in the 

encoder at each resolution increment. These tensors are 
combined by concatenating them along the channel 
dimension and then using a convolution layer with a 1x1 
kernel to combine the two representations. 

We apply a Rectified Linear Unit (ReLU) nonlinearity after 
every convolution and transpose convolution layer, and 
we apply Batch Normalization after every transpose 
convolution layer. 

We apply a final sigmoid activation to the mining 
likelihood output to force it to the range [0, 1], as it 
represents a probability. 

 

Auxiliary output head 

The auxiliary output head takes the spatiotemporal 
embedding vector produced by the temporal core and 
uses it to estimate the total number of each type of unit 
present in the entire map, without regard to where on 
the map those units are. This head performs two 
functions: 

●​ The global unit count estimates produced by 
this head are used to calculate an auxiliary 
loss which improves the training stability of 
the network. 

●​ The dedicated global unit count estimates 
provided by this output may have different 
error properties to a global estimate 
generated by summing across grid cells in the 
main spatial output. This is useful as a 
diagnostic during training to monitor the 
status of the temporal core. 

The auxiliary head is made up of a set of linear layers, as 
it deals with the linear global vectors rather than spatial 
maps, along with Batch Normalization blocks and SiLU 
nonlinearities. 

3.4​ DEFOGGER TRAINING APPROACH 

Loss function 

The loss function used to train the model has two 
components: 

▪​ A component calculated from the 

high-dimensional (spatial) model output 
generated by the decoder. This loss provides the 
primary training signal for the model’s 
predictions by comparing the decoder’s output 
to the true full game state. This loss component 
in turn consists of two subcomponents: 

▪​ A Mean Squared Error (MSE) 
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unit-count-prediction loss applied to the 
80 output channels that predict unit 
counts. 

▪​ A mining-prediction loss applied to the 

single output channel that predicts the 
probability of the opponent mining in 
each grid cell. As this is a probabilistic 
output, a Negative Log Likelihood (NLL) 
loss is used. 

▪​ A component calculated from the auxiliary 

output head which splits off after the temporal 
core. This loss stabilizes the training of the 
encoder and temporal core, and ensures that the 
model generates a rich embedding in the 
temporal core, rather than relying only on the 
skip connections which bypass the core (and the 
auxiliary output head). An MSE unit-prediction 
loss is used here. 

The components of the loss function are combined by 
addition, and are balanced using scaling factors . The α

𝑛
total loss is therefore given by: 

𝐿𝑜𝑠𝑠 =  ‖𝑦
𝑢𝑛𝑖𝑡

−  𝑦
^

𝑢𝑛𝑖𝑡
‖

2

2
−  α

0
𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙𝑠

∑ 𝑦
𝑚𝑖𝑛𝑖𝑛𝑔

log 𝑙𝑜𝑔 𝑦
^

𝑚((
Where  is the true game state and  is the game state 𝑦 𝑦

^

estimated by the model. During training, loss 
components were tracked individually (in addition to the 
total loss) to allow performance of different aspects of 
the model’s predictions to be monitored. 

Learning rate schedule 

Our training process utilised a 1-cycle cosine annealing 
learning rate schedule which exploits the phenomenon of 
super convergence [19], following the recommendations 
[20]. This schedule performs an initial warm-up phase at 
a low learning rate, then cosine-anneals the learning rate 
to a value significantly above the optimal value to enable 
super-convergence, before finally cosine-annealing it to 
zero to overcome stochastic noise. 

This approach enabled a reduction in training time by a 
factor of 5 when compared to traditional deep learning 
schedules which use a constant learning rate, or one that 
anneals downwards during training.  

For our model, the best-performing constant learning 
rate value is 0.001, which requires approximately 1000 
epochs of training to reach good performance. However, 
the 1-cycle approach required only 200 epochs to surpass 
the constant-learning-rate performance. A secondary 
advantage of this approach is reducing overfitting due to 

the increased gradient noise at the higher peak learning 
rate. 

Training process 

The defogger model was developed, and its performance 
improved, by devising a set of experiments which tested 
the effect of variations in model architecture and training 
approach, with the results of each experiment informing 
later experiments. In total, we performed approximately 
600 training runs to optimize and stabilize the training 
process, hyperparameters, and model architecture. 

All models were trained on an NVIDIA DGX compute 
server on the Cambridge Consultants site with 8 NVIDIA 
V100 AI accelerator graphics processing units (GPUs). 
Each V100 can process approximately 10,000 replays, or 
14 GB of replay data, per minute during training. 

3.5​ CONFIDENCE-AWARE DEFOGGER MODELS 

A variation of the ‘standard’ defogger model was also 
developed to predict confidence levels for each spatial 
unit count prediction in the model output. This was 
achieved by training the model to output a variance 
estimate indicating the variation in the training dataset 
for each opponent spatial unit prediction – the main 
count prediction in this case acting as the mean of a 
normal distribution with the predicted variance. This acts 
as a measure of the model’s confidence in its estimated 
unit counts.​
This additional output was implemented by increasing 
the output map channel count from 81 to 121 when 
active. The variance is not predicted for the player’s 
spatial unit predictions, any non-spatial unit counts, or 
mining locations – hence the channel count increasing by 
40, one for each of the opponent unit type count 
variances. 

In order to train the outputs to represent the mean and 
variance of the unit count probability distribution, a 
modified loss function was used for the spatial 
unit-count-prediction loss, in place of the MSE loss. This 
approach is based on the Beta-Negative-Log-Likelihood 
loss introduced by [21], which allows the simultaneous 
learning of the mean and variance of the target 
distribution at the cost of introducing a new 
hyperparameter . This modified β

𝑐𝑜𝑛𝑓
unit-count-prediction loss is given by: 

𝐿𝑜𝑠𝑠
𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒

=  
𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙𝑠

∑ σ
^ 2β

𝑐𝑜𝑛𝑓⎰
⎱

⎱
⎰

𝑛𝑜 𝑔𝑟𝑎𝑑

1
2 log 𝑙𝑜𝑔 σ

^ 2( ) +  (𝑦− 

2σ
^

⎡
⎢
⎣

Where  and  are the predicted mean and variance, µ
^

σ
^

respectively, of the normal distribution for the unit count 
for a given unit type in a given grid cell. 
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As the player’s spatial unit counts are part of the input, 
the variance of these counts could not be left as a 
prediction of the model, as its value tended to zero, 
causing the loss component for the prediction of the 
player’s units to inflate exponentially and dominate 
learning. However, an using MSE loss for the player’s 
units was found to adversely affect training, due to the 
mismatch between loss scaling between the player’s and 
opponent’s unit count predictions. A small, fixed variance 
was therefore used for the player’s unit-count-prediction 
loss, allowing it to balance with the opponent 
unit-count-prediction loss once the predicted variance for 
opponent units had reduced. This fixed variance value 
therefore constituted an additional training 
hyperparameter. Despite this measure, the training 
remained less stable than the model which did not 
predict confidence, due to the sensitivity of the loss to 
changes in predicted variance and the balance between 
loss components. 

As there is no ground truth for variance (as there is no 
variation in the unit counts for a given game state), it is 
not possible to directly assess the performance of 
variance prediction. 

Instead, we plotted the mean predicted variance within 
bins of unit count prediction error magnitude across all 
frames of the test set replays (see Figure 3). Bins were 
defined such that there was a fixed number of bins 
evenly spaced logarithmically across the count error 
range, giving bin widths of ~ln(error) = 0.29. 

On average, and above a count error of ~0.001 (i.e. for 
predictions in hidden areas) predicted variance was 
found to increase with increasing unit count prediction 
error, showing that confidence values do indicate the 
likely accuracy of unit count predictions. 

 

 
Figure 3.  Unit count prediction error v. mean predicted 

unit count variance of the confidence model when applied 

to the test data set, showing the correlation between the 
two. Error bars show the standard deviation of the 

predicted variance values in each bin. 
 

3.6​ PERFORMANCE RESULTS 

We show quantitative performance metrics for the 
defogger model in Table 1. This table provides the values 
of 9 metrics calculated for our standard and 
confidence-aware defogger models, as well as 6 baseline 
approaches. Full details of each performance metric as 
well as all baselines are provided in Annex A. 

Typically, the final standard (non-confidence-aware) 
model achieves the following performance: 

●​ Over 30% IoU for placement of non-zero 
opponent unit counts in map regions 
obscured by the fog of war 

●​ Over 70% IoU for spatial distribution of mining 
prediction in hidden regions 

These results should be compared to the set of non-AI 
baselines (see Annex A) which achieve, at best for each 
metric: 

●​ 26% IoU for placement of non-zero opponent 
unit counts in map regions obscured by fog of 
war 

●​ 19% IoU for spatial distribution of mining 
prediction in hidden regions 

●​ RMSE of 785 and 19 unit counts per unit type 
for non-spatial unit counts and integrated 
spatial counts 

The model consistently outperforms all of the baselines 
at all periods of gameplay. For full results across all 
models and baselines for all performance metrics, see 
Table 1. 

The prediction results of the confidence-enabled model 
are worse than the standard model across all metrics, 
likely due to the need for the model to estimate the 
additional confidence outputs, requiring it to distribute 
less of its representational capacity to the unit count 
predictions themselves. However, the 
confidence-enabled model still performs similar to or 
better than the baselines in many of the metrics. Notably, 
the IoU metrics are good whilst the spatial count error 
metrics are not as good, implying the spatial predictions 
of the main prediction head performed well but that that 
the predicted counts at each location were not as 
accurate. The performance of the non-spatial unit count 
prediction head was similar to the standard model, but 
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slightly worse, showing the predictive performance of the 
model as a whole was worsened by having to additionally 
predict opponent unit count variances. 

Performance of both models was also assessed at 
different stages of the game, defined by blocks of 100 
game frames; given that mode of play typically changes 
with absolute elapsed time, this provides a better picture 
of performance by game stage than using fractions of the 
total game length. 

For the standard model, the locations of the opponent’s 
units which are hidden from view are predicted very well 
initially (>60%), declining as the game progresses to <30% 
- however, the accuracy consistently outperforms that of 
the baselines at all game periods. The model predicts the 
locations of the player’s units (which are visible in the 
input) nearly perfectly, and therefore matches the 
performance of baselines which replicate the input. The 
locations of the opponent’s units which are visible are 
also predicted as well as possible based on the input 
alone, again equalling the baselines’ performance.  As 
with the overall results, the confidence-aware model 
performed worse than the standard model across all 
metrics at all game stages, but outperformed some or all 
baselines for some metrics, particularly IoU metrics. See 
additional results in Annex A. for a comparison of visible 

and hidden opponent unit prediction accuracy over the 
course of the game for the standard model and the 
baselines. 

We highlight the main limitations of our approach:  

▪​ As the model has been trained on gameplay 

recorded from competitive players who display a 
high level of familiarity and skill with SC2, it can 
be difficult for the model to generalise to players 
who are less familiar with the game. 

▪​ Estimating the locations of enemy mobile forces 

has proven very challenging. Although the model 
is effective at locating static targets like bases, 
mining operations and static defence buildings, it 
has limited ability to estimate the location of unit 
concentrations. 

▪​ Our model does not make effective use of 

temporal sequence data. Although the 
architecture is designed to encode information 
from a sequence of input frames covering an 
extended time interval, we were not able to train 
the model to learn useful features from previous 
frames. 

 

 

Model IOU player 
IOU 

opponent 
visible 

IOU 
opponent 

hidden 

IOU mining 
visible 

IOU mining 
hidden 

Unit count 
error player 

Unit count 
error 

opponent 

Unit count 
error 

non-spatial 
player 

Unit count 
error 

opponent 
non-spatial 

Standard 
model 

1.00 0.74 0.42 0.81 0.72 1.6 14.0 1.2 0.6 

Confidence 
model 

0.97 0.68 0.31 0.70 0.19 187.2 191.6 1.7 1.6 

Average 
baseline 

1.00 0.71 0.02 0.94 0.00 0.0 24.1 791.1 245.1 

LKP baseline 1.00 0.77 0.02 0.99 0.00 0.0 23.7 798.9 243.5 

Mirror 
baselines 

1.00 0.64 0.26 0.93 0.19 0.0 19.1 1442.8 102.4 

Return 
baseline 

1.00 0.80 0.01 0.99 0.00 0.0 24.1 792.3 244.7 

Sum baseline 1.00 0.58 0.02 0.99 0.00 0.0 24.1 785.3 244.7 

Zero baseline 0.00 0.00 0.00 0.00 0.00 25.6 25.6 1004.8 422.3 
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Table 1. Performance metrics for the ‘standard’ and ‘confidence-prediction’ defogger models, and the baseline models. 
The metrics for the best-performing model and baseline for each metric are highlighted in bold. 

 

4​ AI FOR DETECTING OPPONENT’S STRATEGIES 

SC2 players may adopt different playing styles or 
“strategies” during a match, to improve their chances of 
victory. For example, they may attempt to produce large 
numbers of military units at the start of the game, in 
order to force a quick victory over their opponent. 
Alternatively, they may take a more defensive strategy, 
and focus on improving their economy so they can 
produce more late-game units (which are typically more 
powerful than early-game units). Players may also focus 
on building units of a specific type, e.g. airborne units, 
light infantry or armoured vehicles. Several of these 
strategies are commonly understood and named within 
the SC2 player community.  

If a player knows what strategy an opponent is pursuing, 
they can take actions to counter this. For example, if their 
opponent is building large numbers of airborne units, 
they may focus on creating anti-air units. 

This process was carried out in four stages: 

●​ We extracted a set of input features from 
different game replays which were deemed to 
be likely to have different distributions 
depending on the opponent’s strategy, based 
on knowledge of typical SC2 strategies. 

●​ We used unsupervised clustering techniques 
to find collections of games where the 
opponent appeared to be following a 
common strategy, and manually labelled each 
collection. 

●​ We trained a set of supervised classification 
models which could be used to predict an 
opponent’s strategy at different stages of the 
game, using the clusters as “ground-truth” 
labels.  

●​ We created a simplified strategy classification 
model, which used a smaller set of input 
features, to aid interpretability. 

4.1​ DATASET 

For the strategic clustering work, we restricted the 
dataset to only the 100,450 replays available from SC2 
version 4.10.0. We applied the same criteria as used for 
the defogger development to down select from these to 
8,768 suitable replays. For the unlabelled strategic 
clustering process, all of these down-selected replays 
were used. For the supervised classifier training, the 
down-selected replays were divided into train, validate, 

and test sets according to an 80:10:10 ratio. 

4.2​ INPUT FEATURES 

For these studies, we selected a range of game features 
which fulfilled two key criteria. Firstly, they were deemed 
likely to be useful indicators of an opponent’s strategy, 
and likely to have different distributions for different 
strategy types. Secondly, they had simple definitions 
which could be easily interpreted by a human. . 
Furthermore, for the supervised strategy classifier we 
only used features which could be calculated while a 
game is in progress, allowing strategies to be detected 
during the game rather than after its conclusion. The 
features we chose included: 

●​ The total numbers of different types of units 
(infantry, armoured vehicles, or airborne 
vehicles) and buildings, and the amount of 
resources spent on each. 

●​ The total amount of resources which have 
been collected and spent, and the recent 
rates of collection and spending. 

●​ Whether certain unit and building upgrades 
have been built during the game up to the 
current time. 

●​ The time at which certain buildings were first 
constructed (if constructed yet). 

●​ The distance between buildings and the 
player’s starting location. 

●​ How much time the game has been going on 
for. 

To calculate these features, we used ground-truth 
information from replays, extracted using the 
methodology outlined in Section 3.2. After producing our 
final strategy classifier model, we also extracted these 
features from the predicted full-state outputs of the 
defogger model (see Section 3) This allowed us to assess 
the impact of the imperfect reconstruction of the full 
state on the strategy classifier model’s performance (see 
Section 4.7). 

4.3​ UNSUPERVISED CLUSTERING OF STRATEGIES 

After extracting features for strategy classification, we 
sought to identify clusters of related games in the data. 
To do this, we used the popular K-means clustering 
algorithm to identify 7 strategic clusters in a feature 
space defined by 8 strategically relevant features, 
selected using expert knowledge of the SC2 domain to 
correlate with the player’s strategic intent while 
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minimizing dependence on the details of how the game 
played out. 

After the replays were each assigned to one of these 
strategic clusters, we examined the distributions of the 
input features and watched samples of replays from each 
cluster, to determine the kind of strategy to which each 
cluster corresponded. These assignments were based on 
the authors’ existing knowledge and online research of 
strategies which SSC2 players typically pursue. The 
strategy labels applied to the 7 clusters, along with the 
number of replays in each cluster, are: 

●​ Bio aggressive (2113 replays) – a high focus 
on the production of “bio” (or infantry) units, 
with limited spending on vehicles. Players 
typically attack early and delay economic 
expansion. 

●​ Air (1603 replays) – a high focus on the 
production of the Battlecruiser and Viking air 
combat units, with correspondingly high 
spending of the Vespene gas resource 
required to construct these units. 

●​ Bio macro (2195 replays) – a high focus on 
the production of bio units, but with a higher 
economic focus than the ‘bio aggressive’ 
strategy, and more production of supporting 
units like Medivac air vehicles. 

●​ All-in (547 replays) – an extremely low focus 
on economic expansion, and very early 
attacks using armies of bio units in an attempt 
to force an early win before an opponent has 
built defensive capabilities. 

●​ Harass/proxy (330 replays) – a high focus on 
the production of “raiding” bio units such as 
the Reaper. The player often builds a “proxy 
barracks” close to the opponent’s base to 
enable a quick attack through construction of 
units nearby. 

●​ Mech (1739 replays) – a high focus on the 
production of mech units (armoured vehicles), 
with a correspondingly high number of 
buildings to produce these vehicles. This leads 
to games of medium length. 

●​ Turtle (176 replays) – a high focus on 
defensive buildings, to guard the player’s 
base. This can lead to very long games. This is 
a relatively unusual strategy. 

4.4​ SUPERVISED CLASSIFICATION OF STRATEGIES 

After assigning each game in the dataset to one of these 
strategy clusters, we trained a supervised classifier so we 
could predict an opponent’s strategy in an unseen game 
from outside the clustering dataset, and while the game 

is in progress. During training experiments, we assumed 
each game’s strategy label at the end of the game was a 
“ground truth” label of the opponent’s strategy. We 
calculated a set of 68 input features, calculated at 100 
randomly sampled frames from each game in the data. A 
sub-set of 10% of the games were set aside as a 
validation set, used to assess the classifier’s performance 
when selecting an algorithm and tuning its 
hyperparameters. A further 10% of the games were set 
aside as a test set, to calculate the unbiased performance 
of the final model. 

After experimenting with a support vector machine 
(SVM) technique, we used a feed-forward neural network 
classifier due to its improved performance and training 
time relative to an SVM. The network included two 
hidden layers of 256 nodes each, with an Exponential 
Linear Unit activation function following each node [22] . 
The outputs of the final layer were passed through a 
softmax function, such that the model output would be 
the probability of a data entry (i.e., the replay from which 
the input features were taken) belonging to each strategy 
class. The network was trained to minimize the 
cross-entropy between the ground-truth strategy and 
each of these output probabilities, using the Adam 
optimization technique [23] with a batch size of 128 

samples and a learning rate of . Dropout was used to 10−4

mitigate overtraining, and data from smaller strategy 
classes was oversampled to improve the classifier’s 
performance on these classes. To improve the numerical 
stability of the neural network, each feature was 
transformed so that training data was distributed with a 
mean of zero and a standard deviation of 1. Linear 
transforms were used for most input features, while a 
small number were log-transformed. 

Across the whole test set, this classifier showed an 
accuracy of 0.57, with the precision and recall on each 
strategy class ranging between 0.34 and 0.66 (see Table 
2). The classifier performed best on classes with large 
numbers of members such as Bio/macro, and poorest on 
classes with fewer members such as Turtle. 

 

Strategy Recall Precision 

Bio/aggressive 0.64 0.47 

Air 0.46 0.87 

Bio/macro 0.66 0.61 

All-in 0.34 0.49 

Harass/proxy 0.48 0.52 

Mech 0.58 0.56 

Turtle 0.35 0.41 
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Table 2. Performance of the strategy classifier neural 
network for each of the 7 strategic clusters. 

 

We examined the classifier’s performance as a function 
of game time, as shown in Figure 4. The classifier’s 
performance at the early stages of games is relatively 
poor with an accuracy score of 0.30 during the first two 
minutes of play. This is because unit compositions and 
buildings constructed by players pursuing different 
strategies do not differ significantly at early stages of the 
game. The performance then improves as the game 
progresses, and unit compositions diverge for different 
strategies. For example, for gameplay after the 
ten-minute mark, the accuracy score reaches 0.81. The 
classifier performed best on long games. 

​

 

Figure 4. The performance of the strategy classifier for 
games of different length (x-axis), and at different stages 
through the game (y-axis). The histogram at the top 
shows the number of games with different lengths. 

4.5​ CREATING A SIMPLIFIED CLASSIFIER 

While the neural network strategy classifier had 
satisfactory performance when predicting an opponent’s 
strategy, it proved difficult to interpret the reasons for its 
predictions. This was due to the large number of input 
features, many of which had relatively non-intuitive 
definitions. 

To resolve these issues, we created a simplified classifier 
neural network model, which used only the 15 features 
which we judged to be most easily interpretable by a 
user. These features mainly consisted of the number of 

key buildings and units belonging to the opponent, and 
the proportions of resources spent on key unit types. 

We wanted the predictions of this model to mimic the 
original classifier as closely as possible. Therefore, we 
used a model distillation technique, where the simplified 
“student” model is trained to match the outputs of the 
original “teacher” model, rather than the ground-truth 
labels in the data. Apart from the reduced number of 
inputs to the 15 simplified input features, the student 
model’s architecture was identical to that of the teacher 
model. It was trained to minimize the mean squared 
error between the logits for its strategy predictions and 
the logits for the teacher model’s predictions. We 
considered a more complex loss function which included 
a term rewarding correct predictions of ground-truth 
strategy labels [24]. However, we ultimately used the 
simpler mean-squared error method, because our 
priority was for the student model to match the teacher’s 
predictions, rather than optimally matching ground-truth 
labels. The same training dataset and optimizer were 
used as when training the teacher model.  

After training concluded, we measured the correlation 
between the student and teacher models’ predictions 
using a Pearson correlation coefficient, finding values of 
0.96 or greater for each strategy class, on the test 
dataset. The distilled model showed an accuracy of 0.53 
relative to ground-truth labels across the full test set, 
close to the original model’s accuracy of 0.57. As for the 
original model, the performance varies with game time, 
with an accuracy score of 0.22 in the first two minutes, 
and 0.81 for gameplay after ten minutes. 

4.6​ EXPLAINABILITY WITH SHAPLEY ADDITIVE EXPLANATIONS 

Following the training of the simplified 
strategy-classification model, we considered how to 
create explainability outputs for it. Using this simplified 
model, we created an explanation model using the 
Shapley Additive Explanations (SHAP) method [25]. This 
model apportions values to each input feature for a given 
classifier prediction, showing the amount by which that 
input feature is likely to have increased or decreased the 
probability of that prediction. For example, if an 
opponent has a large number of airborne units, this 
would typically indicate that they are pursuing the “Air” 
strategy, meaning the model will give a large SHAP value 
for the air spending fraction and similar features. This 
provides some insight into the key information which the 
strategy classifier is using to calculate its predictions, 
helping the user to judge whether these predictions are 
reliable or not. We used the DeepSHAP method, which 
uses optimizations to improve the speed of SHAP 
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calculations with neural network-based classifiers. 

4.7​ PERFORMANCE USING DEFOGGER OUTPUTS 

The strategy clusters and classification models were 
trained using ground-truth information about the 
opponent’s units and resources. In a more realistic 
setting, such information would not be accessible to a 
player, meaning they would need to only the partial game 
state information available during normal play. It follows 
that they could therefore use the outputs of the defogger 
model to estimate the full game state from the available 
partial game state, to use as input into the strategy 
classifier. We therefore measured the performance of the 
simplified classifier when its input features were 
calculated from the spatial maps and unit count vectors 
output by the defogger model. The majority of the 
features (such as number of units and times they were 
first constructed) could be directly extracted from these 
outputs, or derived using simple methods (e.g. using the 
difference between unit count estimates in adjacent 
game frames to estimate when units are built or 
destroyed). However, resource-related values are not 
directly predicted by the defogger model. Resource 
collection values therefore needed to be estimated using 
the number of resource-gathering units predicted by the 
defogger model, together with the typical rates of 
resource gathering by these units as seen in games in the 
defogger’s training dataset. Rates of resource spending 
could be estimated from the number of units being built 
(as predicted by the defogger), and their costs. 

After calculating these input features, we measured the 
performance of the strategy classifier model as the values 
of each input feature were changed from their 
ground-truth values to values derived from the defogger 
model (see Figure 5). We used the F1 score to measure 
this performance (the harmonic mean of precision and 
recall), macro-averaged across the different strategy 
classes (so that the metric assigns equal importance for 
each class). The order in which these features were 
converted was chosen to minimize the rate at which the 
performance dropped (i.e. picking the feature which gave 
the lowest performance drop, at each step moving from 
left to right)  

 

Figure 5. degradation of strategy classifier performance 
as different features are changed from ground-truth to 
defogger-derived values (moving left to right). 
 
The classifier had an initial F1 score of 0.49, which 
dropped to just 0.015 after all features were replaced. At 
this point, the classifier predicted opponents in all games 
were following the “All-in” strategy. However, some of 
the features could be converted to defogger-derived 
values without substantial drops in performance, such as 
the maximum distance of buildings from the command 
centre, or the number of command centres the opponent 
has. This suggests that in a more realistic setting, the user 
could focus on gathering accurate information about the 
variables which gave substantial performance drops, such 
as the number of resource-gathering units or the time 
the opponent took to build a second command centre, 
while using the defogger-derived values for features 
which give a smaller performance drop. 

We also applied some post-processing to the defogger 
model’s outputs, to make them more closely match real 
data, to see if this improved classifier performance. We 
re-scaled the unit count vectors to match the 
distributions in ground-truth training data, and rounded 
unit counts down to the previous integer. This slightly 
improved the performance of the strategy classifier after 
all features were converted to defogger-derived values, 
increasing the F1 score from 0.015 to 0.065. However, 
this performance is still too poor to be useful to a player. 
As a future development, the strategy classification 
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model could be re-trained using defogger-derived 
training data, so it can learn the patterns of noise which 
the defogger introduces. This is likely to improve the 
strategy classifier’s performance when applied to 
defogger-derived data. 

5​ THE “BRIDGE” TO PROVIDE THE RIGHT INFORMATION AND THE 
RIGHT EXPLANATION 

As mentioned in section 2, there is disconnect between 
AI outputs and providing explanations for non-AI-experts 
about the process behind those AI outputs. Numerical 
locally interpretable model explanations such SHAP [25] 
are helpful, however they require specialised AI expert 
knowledge to fully understand. 

Recent improvements in natural language generation 
have made rationalisation an attractive technique for AI 
explanations, because it is intuitive, 
human-comprehensible, and accessible to non-technical 
users. Rationalisation provides explanations justifying a 
model's prediction in natural language [26][27]. It aims to 
offer a coherent and interpretable reason for that 
prediction and allows individuals without domain 
knowledge to understand how a model arrived at a 
prediction.  

For these reasons, we used rationalisation as our 
approach to breaching the technical gap between 
outputs and users’ understanding. In our explanations, 
we constructed rationales or justifications which present 
the input features influencing the model's prediction. Our 
objective was that the reasoning behind the prediction 
could be understood by a non-technical user simply by 
reading the explanation/rationale, thereby revealing the 
model's decision-making process.  

We followed the model of ‘selective explanation’s [28]: 
usually, users do not expect an explanation can cover the 
complete cause of a decision - instead, they desire an 
explanation that can convey the most valuable 
information that contributes to the decision. A sparse 
explanation, which includes a minimal set of important 
features that help justify the prediction, is preferred. 

Our aim was to answer the important questions which 
are key to the user achieving their goal: 

●​ What might the opponent be doing (behind the 
fog of war)? What can an AI tell me about 
red-force positions through information with 
limited availability, and with what level of 
confidence? 

●​ What do the opponent’s actions mean at 
different stages of the game? What can an AI tell 
me about the red-force strategy, so that I can 

understand and incorporate this information into 
my decision making accordingly? 

We answered the questions above by creating a UI that 
displayed AI outputs with graphical and textual 
explanations. The explanations were expressed in gaming 
language and translated to a military language to test 
transferability of the technique to C2 environments. Our 
usability study (see Section 6) then highlighted the areas 
that the users (players) thought would best inform their 
decision making. Descriptions of these are found in the 
following sections. 

5.1​ USER INTERFACE 

The User interface is segmented into three primary 
views: Player view, AI Vision, and Opponent’s Predicted 
Strategy. Each segment provides distinct functionalities 
essential to enhancing strategic planning and decision 
making. 

Player View: This segment serves as the live link between 
the ongoing gameplay and the user interface, displaying 
real-time information to the player, see Figure 6. It has 
the flexibility to be hidden, allowing the player to focus 
on the AI output. 

 

Figure 6. Player’s minimap, showing what is normally the 
player’s view of the game and fog of war(areas in dark 

grey are unexplored, areas light grey reflect those where 
“scouts” have been but which are no longer within sight 

range of the player’s units) 
AI Vision: The AI Vision section is a crucial overview 

of the game environment, predicting enemy 
location and unit counts, in order to aid players in 
resource allocation and tactical planning. It 
incorporates several key elements (see Figure 7): 

●​ Enemy Location Prediction: estimated 
positions of opponent units output by the 
defogger model. 

●​ Confidence Level: indicates the certainty of 
the defogger model’s predictions of opponent 
units. 

●​ Ground Truth: Displays true positions of 
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enemy units, to validate AI predictions. 
●​ Predicted Unit Count: Offers an estimate of 

the total number of opponent units across the 
whole map, as output by the defogger model. 

 
Figure 7. Screenshot of the UI showing opponent’s units 

through the fog of war as predicted by the defogger 
model, prediction confidence levels, and total predicted 

unit counts across the map. 
Opponent’s Predicted Strategy: This segment focuses on 
anticipating the opponent’s future moves and strategies, 
see Figure 8. 

●​ Prediction and Tactics: Prediction of the most 
likely opponent strategy from the simplified 
strategy classifier model, and suggestions of 
their likely tactics based on this strategy. 

●​ Prediction Timeline: Line graph showing the 
predicted probability of each opponent 
strategy over time. 

 
Figure 8 Screenshot of the UI showing strategy prediction, 
description of strategy and strategy prediction timeline. 

●​ Explainability: Provides insights into the 
rationale behind opponent strategy 
predictions, helping players understand and 
trust the AI's strategic assessments, based on 

feature values, see Figure 9. We did not 
include SHAP-related language to reduce the 
knowledge barrier for new users. 

 

 
Figure 9 Screenshot of the UI showing user-centric 
explainability of the opponent strategy prediction 

 
The interface employs military language where possible, 
to ensure clarity and precision, aligning with the 
terminology familiar to the C2 user base. Additionally, an 
information-hover feature allows users to obtain detailed 
descriptions of various elements by hovering over the 
mouse over them, facilitating a deeper understanding 
without cluttering the interface. The combination of the 
segmentation of the UI and detailed functionality 
enhance the strategic depth and user engagement with 
the application. 

6​ USER FEEDBACK ON AI-DECISION SUPPORT SYSTEMS 

Critically evaluating AI-based systems and user interfaces, 
and their usability and level of trust in the context of 
decision support is important in informing future 
interface design. We therefore carried out a user 
feedback study to assess the system developed as part of 
this project. 

The study protocol is laid out in Annex B, Figure 12. The 
main research questions we wanted to address using 
user feedback were: 

1.​ What effect does explanation have on users’ 
satisfaction and trust in the AI-decision support 
system? 

2.​ What type of explanation – textual or graphical - 
is most useful for a positive effect on satisfaction 
and trust? 

The usability constructs were measured using the system 
usability scale (SUS) questionnaire [29], and measures of 
trust were adapted from a ‘cruise control’ system 
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evaluation questionnaire Error! Reference source not 
found.. To supplement the questionnaires, we conducted 
a semi-structured interview to explore the transferability 
of our tested models and interfaces to operational 
planning, and to do a deeper dive on trust. The questions 
can be found in Annex B. 

Five video segments were chosen to highlight different 
aspects of the AI model predictions and subsequently the 
different user interfaces: 

●​ Segment 1: from ‘pending’ (no strategy 
prediction) to the first strategy prediction. 

●​ Segment 2: determining confidence for first 
prediction of an ‘Armoured Warfare’ strategy of 
approx. 40%. 

●​ Segment 3: increasing confidence in the first 
prediction of an ‘Armoured Warfare’ strategy 
from 70% to 90+%. 

●​ Segment 4: switching between ‘Armoured 
Warfare’ and ‘Air Dominance’ strategy 
predictions, where both wavered around 50%. 

●​ Segment 5: establishing confidence for ‘Air’ 
strategy prediction from 60% to 90+%. 

 

6.1 BACKGROUND QUESTIONNAIRE RESULTS 

The background questionnaire was provided before the 
users began providing feedback on the system. In total, 
10 users provided feedback, with varied experience 
playing SC2. All users considered themselves to be either 
experts (7 people) or somewhat experts (3 people) at 
computer games and all users had experience playing 
real-time strategy games.  

6.2 USABILITY AND TRUST QUESTIONNAIRE RESULTS 

System Usability Scale 

The System usability scale (SUS) [30] is one of the most 
used and well-known scales for assessing usefulness of a 
UI in UX research. With high reliability and validity, the 
SUS consists of a series of 10 Likert-scale statements that 
produce a score between 0 and 100 (100: most useful 
and 0: not useful at all). Using this score, we can get a 
single numerical value that summarises the perceived 
usefulness of a given UI.  

Overall SUS scores: Using a threshold of 60 to mark 
“useful” amongst the SUS scores (Figure 10), the 
graphical and control UIs were seen as useful in time 
segments 2 and 4, where the confidence is determined 
for the ‘Armoured Warfare’ strategy prediction and the 
prediction switched from this to the ‘Air Dominance’ 

strategy. Interestingly, although the text UI appeared 
least useful when categorized by positive and negative 
statements, it appeared more useful than the control and 
graphical UI in both time segment 3 and 5, where there is 
an increase in the confidence in the ‘Armoured Warfare’ 
prediction from 70 to over 90% and establishing 
confidence for the ‘Air Dominance’ prediction. 

 

Figure 10 . System usability scores over each time 
segment for each stimulus. Note: * indicates a statistically 

significant (p<0.05) result between two stimuli using a 
dependent t-test. 

Trust Assessment 

To assess trust, we used a validated subjective metric 
that was short and generalisable. The authors in [31] 
noted that trust can be narrowed in scope from a general 
overarching theme of trust to reliability, predictability, 
and efficiency. We modified their original trust scale 
(used to assess trust of vehicles with cruise control 
systems) to match that of a gameplay task. We 
interpreted scoring as ‘the higher the summed value of 
the four Likert questions, the more the user trusted the 
system’.  

Predictability: All three UIs were similarly and 
consistently rated for predictability (except for time 
segment 1 where the control UI was slightly more 
predictable).  

Reliability: The graphical UI consistently had ratings 
above 3 for each segment. The control UI had started off 
with similar reliability ratings to the graphical UI, but 
scores decreased steadily as each time segment went on, 
e.g. to an average rating of 2.1 for time segment 4.  

Efficiency: The graph UI received the highest average 
scores for all time segments. However, in general, none 
of the UIs were considered efficient for playing SC2, 
understandably due to lack of integration with the game.  

 
ICCRTS 2021​ 17 



Trust (overall): The control UI was rated as being the least 
trustworthy UI, even though it was the simplest. Both the 
graph and the text UI were rated as more trusted, with 
the graph UI having ratings above 3 throughout.  

6.3 SEMI-STRUCTURED INTERVIEW RESULTS 

A semi-structured interview is a qualitative research 
method with a pre-determined set of open questions and 
with opportunities for the interviewer to explore specific 
themes or responses further [32]. The interview topics 
covered feedback on the different types of user 
interfaces, whether accuracy influences trust in AI, and 
transferability of the AI models and user interfaces to 
operational planning. The questions are listed in Annex B. 

We analysed the interview transcripts using thematic 
analysis supplemented by an LLM (a local version of 
GPT4o), and validated by a human. We based our 
thematic analysis methodology on two papers [33][34], 
picking the results which best grouped feedback while 
reflecting the nuances of different users. The following 
themes emerged: 

Feedback on user interfaces. In accordance with the SUS 
analysis, the majority of users preferred the graphical UI 
for its quick readability and efficiency of information 
delivery, especially in fast-paced gaming scenarios. Some 
users also liked the minimalist control interface with no 
explainability components, highlighting the balance 
between providing useful information and overwhelming 
users with too much text. Users commented that the UI 
would be more useful as a tool to review their gameplay, 
rather than for real-time decision making. 

Perceived trust influenced by overall model accuracy 
and usefulness. Trust is closely tied to how useful the 
information being provided is, and strongly informed by 
lived experience of using the model. A single statement 
or statistic provided to the user (e.g. “the model is 68% 
or 88% accurate overall”), did not significantly change 
trust perceptions. If the user believed that the model was 
usefully predicting future events, then they were more 
likely to trust the system and base their decisions on it. 

Trust in AI for use in real-world applications. Users agree 
on the potential of AI but remained cautious, especially 
in high-stakes situations. They expressed reservations 
about fully trusting AI, preferring it as a supplementary 
information source rather than a primary 
decision-making tool. Users do not want to be told 
exactly what to do, but instead be provided with either a 
summary report or predictive information to enhance 
their situational awareness while retaining autonomy 
over decision-making.  

Personalisation. Users mentioned that the user 

interfaces would benefit from personalisation along the 
dimensions of player skill level, expertise, and game 
progress. For example, actionable insights (based on the 
assumption of the highest confidence strategy) would 
benefit novice users; while expert users would prefer 
seeing all possible predicted opponent strategies, 
however unlikely, to mitigate risks. This is because 
higher-level users expected deception by their 
opponents, drew on more sources of information to 
make their decisions, and had the cognitive capacity to 
deal with low-probability events. 

7​ CONCLUSIONS AND RECOMMENDATIONS 

In this paper, we have used the commercial video game 
SC2 as a medium for simulating battle environments to 
advance AI research relevant to military C2 operations. 
We have taken a human-centric approach to AI 
development, understanding what a user (or in this case 
a player) would want to get from an AI to assist and 
augment their decision making. 

We developed two AI approaches to meet user technical 
requirements: (i) piercing the fog of war to infer an 
opponent’s assets’ locations and (ii) opponent strategy 
detection and strategy changes over time.  

We assumed that the human (player) did not have 
technical knowledge of AI and therefore considered their 
needs for understanding of AI and AI outputs for decision 
making.  

Finally, we also used the gaming environment as a 
simulation medium for human-AI interaction. We 
explored through a usability study what humans (players) 
thought of the information provided, and their feedback 
on the usability of the display of graphical and textual 
explanations.  

In conclusion, our project provides the following benefits 
for advancing military research: 

●​ A user-centric approach. AI is not developed 
in isolation. Insights on user needs for 
information and functionality need to be 
understood in order to develop the right AI 
solution. A user-centric approach should be 
applied to real military projects in order to 
direct resources towards the most valuable 
developments of AI. 

●​ Piercing the fog of war. Military operations 
and planning at operational and tactical level 
encounter the challenge of partial information 
for decision making. Our approach illustrates 
how AI could aid this challenge with a 
“defogger” approach that ingests a huge 
amount of historical data and trends in order 
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to nowcast what might be happening on the 
situation at hand. 

●​ Narrowing down key features for 
characterising opponents’ movements and 
behaviours. The distilled AI classifier could 
perform with only the top 15 most important 
features for strategy classification. This has 
huge value for military intelligence in 
situations in which it is difficult to focus on 
the vast amounts of varied information. By 
narrowing down to key features for a 
particular set of events that define, for 
example, a strategy, the data used and the 
speed of insight generation can be optimised 
and delivered faster to the decision maker. 

●​ Flexible user-centric explainability 
framework. Explainability of AI is one of the 
most looked for AI developments. Non-AI 
experts and AI users need to understand and 
trust the outputs of an AI agent. In our 
project, we focused on one of the most 
evolved explainability techniques, SHAP, to 
detect feature importance for the output of 
the classifier. We explored what type of 
explanations would be most useful to the user 
and how to translate the outputs of SHAP into 
a language that could be understood. This is, 
and will be, a key element for any 
implementation of AI within the military 
environment, where it is crucial that military 
experts can understand and base their 
decisions on information with confidence.  

●​ Human-AI interactions. Human-AI 
interactions are becoming extremely 
important, as AI will likely be deployed as part 
of a socio-technical environment (within a 
team, within a unit, etc.). Our approach to 
explain and display information in a way and 
language that is easy for the user to absorb, 
within a user interface that is tailored to the 
task, is also beneficial to consider when 
deploying solutions in a military context. This 
makes the output of the AI development 
useful and valuable to the user, allowing it to 
be effectively incorporate this into their 
decision making.  

●​ User feedback and feedback loops. User 
feedback and feedback loops are also 
essential to refine and develop effective 
human-AI interactions. We developed a 
usability study that looked at :i) SUS scores 
through structured questionnaires and ii) in 

depth interviews for qualitative insights. This 
provided us with valuable insights that would 
feed back into our design. 

 
In conclusion, recommendations of further work include: 

1.​ Push the technology closer to real-world military 
applications: (i) move from gaming simulation 
environments to more realistic simulators (ii) 
address data volume and quality issues inherent 
in realistic applications. 

2.​ Expand Human-AI interaction research and 
development within military contexts: explore 
human-AI interfaces, communication channels 
and interactions that include different ways of 
communicating AI insights to military users. 

3.​ Build user trust for fast implementation and 
uptake of AI solutions for C2: (i) implement 
user-centric explainability frameworks (ii) build 
user trust for fast implementation of AI solutions 
for C2 decision making. Insights on usability, trust 
and personalisation where extremely valuable to 
assess how our explanations and UI could be 
refined. 
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Annex A – Defogger training 
details 

10​ DEFOGGER HYPERPARAMETERS 

The full sets of hyperparameters used for training the 
final defogger models are shown in Table 1. 

Hyperparameter 
name 

Description Standard 
model 
value 

Confidence 
model value 

Batch size Number of 
game 
sequences per 
minibatch 

128 128 

Sequence length Number of 
frames per input 
sequence 

1 (see 
limitations) 

1 (see 
limitations) 

Number of 
batches trained 

Total number of 
training steps 

99,000 
(approx. 
200 
epochs) 

150,000 
(approx. 300 
epochs) 

Initial learning 
rate 

Learning rate at 
start of training 

0.0005 0.001 

Peak learning 
rate 

Max learning 
rate during 
training 

0.005 0.005 

Peak learning 
rate position 

Fraction of the 
way through 
training that the 
peak learning 
rate occurs 

0.3 0.2 

Mining loss scale Scale factor for 
mining 
prediction loss 
term ( ) α

0

0.01 0.01 

Auxiliary global 
unit loss scale 

Scale factor for 
the auxiliary 
global unit 
count prediction 
loss term ( ) α

1

2x10-5 2x10-5 

Opponent unit 
loss scale 

The unit 
prediction loss 
for opponent 
units is scaled 
up by this factor 
compared to 
the loss for 
friendly units 

1.0 10.0 

Gradient clip 
value 

All gradients 
are clipped to 
+/- this value for 
stability 
purposes 

0.1 0.1 

Minimum 
variance 

Minimum 
allowed value 
for total output 
variance 

N/A 0.0001 

Friendly unit 
count variance 

The variance 
used for friendly 
unit counts in 
the loss formula 
(not learned) 

N/A 0.0001 

Table 1. Final training hyperparameters 
 

11​ DEFOGGER PERFORMANCE METRICS 

Performance metrics 

A number of metrics were used to assess different 
aspects of the model’s performance, given its 
multi-faceted output. These can be divided into a set of 
categories as follows: 

●​ Intersection over Union (IoU) – spatial 
performance metric assessing how well 
predicted unit locations match the ground 
truth: 

o​ Player unit loU – Average IoU over all player 
unit types 

o​ Opponent unit IoU - Average IoU over all 
opponent unit types 

o​ Opponent visible unit IoU – IoU only of the 
opponent’s visible units 

o​ Opponent hidden unit IoU – IoU only of the 
opponent’s hidden units 

o​ Mining IoU – IoU of mining locations (i.e. 
locations of Command Centres, Orbital 
Commands and Planetary Fortresses) 

o​ Mining visible IoU – IoU only of mining 
locations in visible regions of the map 

o​ Mining hidden IoU – IoU only of mining 
locations in hidden regions of the map 

●​ Unit count error – root mean squared error 
(RMSE) in the predicted count across all unit 
types: 

o​ Player unit count error – RMSE of the unit 
count for the player’s units 

●.o.●.1​ Spatial – Player unit count error for the 
spatial unit prediction head 

●.o.●.2​ Non-spatial - Player unit count error for 
the non-spatial unit prediction head 

o​ Opponent unit count error 
●.o.●.1​ Spatial – Opponent unit count error for 

the spatial unit prediction head 
●.o.●.2​ Non-spatial - Opponent unit count error 

for the non-spatial unit prediction head 
 

12​ DEFOGGER BASELINES 

The baseline models used alongside the defogger model 
were as follows: 
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●​ Zero – lower-limit baseline which returns 
zeros in all outputs, i.e. no predicted units or 
mining locations, ignoring all input. This 
baseline is useful to show that the model is 
making any correct predictions, including of 
known information. 

●​ Return  - returns the most recent game frame 
as the output, i.e. a direct copy of the input 
unit type counts and locations The locations 
of any opponent Command Centres (including 
snapshots) in this unit count are returned as 
mining locations.This baseline is useful for 
checking that the model is predicting known 
information correctly. 

●​ Sum - sums the input data over all input game 
frames and normalises over the input frame 
count. The mean unit count for each unit type 
over all input frames is therefore returned. 
The locations of any opponent Command 
Centres (including snapshots) in this mean 
unit count are returned as mining locations. 
This baseline therefore represents a very 
simple use of all frames in the input 
sequence. 

●​ Average - finds the average number of units 
of each type across the input frames and 
returns the last position of the units present 
for the longest up to that average count. The 
locations of any opponent Command Centres 
(including snapshots) in this average unit 
count are returned as mining locations. This 
baseline represents a slightly more intelligent 
method of making use of the full input 
sequence. 

●​ Last-known Positions (LKP) - attempts to 
track unit units’ movements by associating 
unit positions frame-to-frame. Returns the 
last known position of each unit, unless it 
appears to have been destroyed – units which 
entered the fog of war are kept. The locations 
of any opponent Command Centres (including 
snapshots) in this unit count are returned as 
mining locations. This baseline represents a 
variation on making use of the full input 
sequence. 

●​ Reflect the Player - reflects the unit types and 
positions of the player across the map 
according to the symmetry of the map, taking 
into account observed enemy units. Visible 
opponent units are returned as observed and 
subtracted from the total count of the same 
type to be mirrored. Units which would be 

mirrored into visibly empty areas are returned 
at the nearest non-visible location. The 
locations of any opponent Command Centres 
(including snapshots) in this mirrored unit 
count are returned as mining locations. This 
baseline is based on the assumption that 
players carry out similar actions at similar 
times during the game. 

13​ ADDITIONAL DEFOGGER RESULTS 

 

Figure 11 IOU opponent visible 

 
Figure 12 IOU opponent hidden 
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Annex B- User feedback 
study on AI-decision support 

systems  
Graphics explaining: 

 

 

 

 

 

 

 

 

Figure 15. User Questionnaires 

 

 

 

 

 

 

 

13.1​ INTERVIEW QUESTIONS 

General feedback 

●​ Among the 3 UIs you saw today, which was your 

most preferred? Why?  

●​ How could your most preferred UI be improved, 
e.g. by combining it all in a single UI? 

Deeper dive into trust given 2 levels of accuracy data 

●​ Overall, “From a scale of 1-5, what was your 
feeling of trust in the model?” Please explain the 
reasoning for your given rating. 

●​ I’ll now give you some additional information on 
the model’s accuracy. Throughout the game, it 
was approximately 88% (or 68%) accurate in 

predicting the right strategy. How does this 
information change your perception of the model 
change? 

●​ Unsupervised approach to get clusters ◊ Labelled 

by hand using domain experts (ground 

truth) ◊ Fed into classifier (this is what accuracy 

refers to) 

●​ Finally, “From a scale of 1-5, what was your 
feeling of trust in the model?” Please explain the 
reasoning for your given rating. 
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Transferability to operational planning 

●​ Now, I want you to think outside of StarCraft II 
about the transferability of the model. Imagine 
you have access to a similar model for evacuation 
of non-military personnel from a dangerous 
evolving situation. 

●​ Would you trust a model like this to help you 
make decisions in [scenario]? Why or why not? 

●​ What would you want to see in a User Interface 
to help you make decisions around [scenario]? 
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