

User Onboarding Tour TDD
User Onboarding Tour TDD​ 1
Administrativia​ 2
Review Tracker​ 2
Background​ 2
Motivation​ 2
Goals​ 3
Non-Goals​ 3
Solutions​ 4

Solution 1​ 5
High Level Design​ 6

Diagram​ 6
Description​ 7

Low Level Design​ 9
Testing Plan​ 13
Tasks To Do​ 13
Release Plan​ 14
Benefits​ 14
Drawbacks​ 14

Solution 2​ 14
Benefits​ 14
Drawbacks​ 14

Solution 3​ 14
Benefits​ 15
Drawbacks​ 15

Conclusions​ 15
Future Next Steps​ 15

Administrativia
Authors: Reynold Morel

Approvers: Enzo Martellucci (enzo.martellucci@preset.io)

Reviewers: enzo.martellucci@preset.io, luis.sanchezm86@gmail.com

Status: Draft / In Review / Approved

Last Review: Feb 3, 2026

Review Tracker
Role / Team Name / Email Approved ✅ Conditional Approval ✳️ Not Approved ❌

Software
Engineer

Enzo Martellucci
(enzo.martellucci@
preset.io)

✅

Software
Engineer

Luis Sánchez
(luis.sanchezm86
@gmail.com)

✅

Background
New users entering Apache Superset for the first time may find the application challenging to
navigate. Due to the breadth of features and configuration options, key actions and workflows
may not be immediately discoverable. As a result, first-time users often require additional time
and experimentation before becoming comfortable with the user interface and overall user
experience.

Motivation
The goal of this proposal is to introduce a guided onboarding experience that helps users
understand how to navigate Superset and complete common tasks. This experience should
provide contextual guidance through interactive tours that explain relevant UI elements and
workflows.

mailto:reynoldmorel@gmail.com
mailto:enzo.martellucci@preset.io
mailto:enzo.martellucci@preset.io
mailto:luis.sanchezm86@gmail.com
mailto:enzo.martellucci@preset.io
mailto:enzo.martellucci@preset.io
mailto:luis.sanchezm86@gmail.com
mailto:luis.sanchezm86@gmail.com

In addition to supporting first-time users, the guided tours should be accessible after the initial
experience, allowing users to revisit them when needed.

Goals
Given the potentially large scope of a guided onboarding system, this proposal intentionally
limits its scope to ensure feasibility within a constrained development timeline (approximately 10
hours).

The goals of this effort are:

●​ Establish a reusable foundation for guided tours that can support additional workflows in
the future.

●​ Automatically present a guided tour to users who have not previously completed it.
●​ Allow users to re-run guided tours on demand.
●​ Implement a single, end-to-end guided workflow:

○​ Creating a new dashboard starting from a state where no charts currently exist.

Non-Goals
The following items are explicitly out of scope for this proposal:

●​ Implementing guided tours for all Superset workflows.
●​ Building a dedicated UI page or management interface for creating, editing, or

administering tours.

Solutions
Regarding the FE library to use, we found the following:

Criterion React Joyride Shepherd.js Intro.js

Primary Model React-specific guided tour
component

Framework-agnostic
core with React
wrapper

Framework-agnosti
c JS tour library

React
Integration

Native React component
API

React via wrapper
(react-shepherd)
(GitHub)

React wrappers
available but not
React-native

Custom
Component
Support

Supports custom React
components for tooltips

Support via config; less
React-idiomatic

Limited; imperative
API

Maintenance /
Activity

Some recent maintenance,
but original repo hasn’t
seen major updates for a
while (similar to being
stable) (js.libhunt.com)

Active core Shepherd
library with recent
commits; React
wrapper archived (but
core still maintained)
(GitHub)

Mature and
popular, frequent
releases on main
repo; React
wrapper may lag

Popularity /
Community

Moderate GitHub stars,
widely used in React apps
(js.libhunt.com)

Large community for
core Shepherd; smaller
React wrapper

Very large and
established, many
users and
examples
(OnboardJS)

License MIT MIT AGPL-v3
(commercial
license available)
(introjs.com)

Bundle Size /
Dependencies

Larger due to React and
floater positioning

Moderate; requires CSS
and popper logic

Lightweight core;
CSS + JS

Feature Set Flexible tours, callbacks,
continuous flows

Highly customizable,
modal overlay, async
hooks

Simple tours with
progress bar, hint
steps

https://docs.react-joyride.com/
https://docs.shepherdjs.dev/guides/install/.
https://introjs.com/
https://github.com/shepherd-pro/react-shepherd?utm_source=chatgpt.com
https://js.libhunt.com/compare-intro-js-vs-joyride?utm_source=chatgpt.com
https://github.com/shepherd-pro/react-shepherd?utm_source=chatgpt.com
https://js.libhunt.com/compare-intro-js-vs-joyride?utm_source=chatgpt.com
https://onboardjs.com/blog/5-best-react-onboarding-libraries-in-2025-compared?utm_source=chatgpt.com
https://introjs.com/?utm_source=chatgpt.com

Typical Use
Case

React apps needing deep
component control

Complex
multi-framework apps

Simple declarative
tours, broad
browser
compatibility

Solution 1
Consists on supporting a structure in the BE to store the workflows a user can see or go through
and store, if it was visited or not, last visited date and the times the user has gone through an
onboarding workflow. Finally, in the FE we can load / control the onboarding workflow state
depending on if the user has gone through it or not. We are planning to use
https://docs.react-joyride.com/ for the FE, this library would be in charge of adding the tour
experience and connecting each component for each step.

https://docs.react-joyride.com/

High Level Design

Diagram

Description

This proposal introduces a backend-backed onboarding framework to support guided workflows
and track user progress across sessions.

Data Model

Two new database tables will be introduced to support onboarding workflows and per-user
progress tracking:

1.​ Onboarding Workflows​
A table to define the available onboarding workflows supported by Superset.​
​
Example fields:

a.​ id (integer, primary key)
b.​ name (string, unique)
c.​ description (string)

2.​ User Onboarding Workflows​

A mapping table to track onboarding workflow usage on a per-user basis. This table will
be used to persist whether a user has completed or interacted with a given onboarding
workflow, as well as basic usage metadata.​
​
Example fields:

a.​ user_id (integer, foreign key to the user table)
b.​ workflow_id (integer, foreign key to onboarding workflows)
c.​ last_visited_date (nullable timestamp)
d.​ visited_times (integer)
e.​ should_visit (boolean)

Backend API

Two new REST API endpoints will be added under the current user namespace to expose
onboarding workflow data to the frontend:

●​ Retrieve onboarding workflows for the current user​
GET /api/v1/me/onboarding_workflows​
​
Returns the list of onboarding workflows along with user-specific visitation state.​
​
​

●​ Mark an onboarding workflow as visited​
PATCH /api/v1/me/onboarding_workflows/<workflow_id>/set_visited​
​
This endpoint will update the corresponding user-workflow record by:

○​ Incrementing visited_times
○​ Updating last_visited_date to the current timestamp.

Frontend Integration

The frontend will load onboarding workflow metadata during user login to determine which
workflows should be presented automatically and which can be manually re-triggered.

A dedicated Superset component will encapsulate all onboarding workflows and their
configuration. Individual pages or components will be responsible for defining and managing the
state and progression of their associated onboarding steps.

Migration Strategy

A database migration will be introduced to initialize onboarding workflow records for existing
users. This ensures that all users have a consistent baseline state for onboarding workflows
without requiring manual intervention.

Notes for Future Extension

The proposed design establishes a reusable foundation that can support additional onboarding
workflows over time without requiring changes to the core architecture.

Roles system impact

According to the current implementation only Gamma and Public users will not be able to mark
their tour as visited since they have very limited access, mostly read access permissions to the
API resources. This means the tour will always show up and these users will need to skip it.

Maintenance

For the first version of this feature, the dev process to add a new workflow will be:

1.​ Dev adds a new migration using Alembic to add the new onboarding workflow and
assign it to users.

2.​ Dev adds the new onboarding workflow in the FE.

Low Level Design

We could create the 2 tables mentioned in the previous section by leveraging the existing ORM:

class OnboardingWorkflow(Model, AuditMixinNullable):

 __tablename__ = "onboarding_workflows"

 id = Column(Integer, primary_key=True)

 name = Column(String(100), unique=True)

 description= Column(String(255))

class UserOnboardingWorkflow(Model, AuditMixinNullable):

 __tablename__ = "user_onboarding_workflows"

 user_id = Column(Integer, ForeignKey("ab_user.id"))

 workflow_id = Column(Integer, ForeignKey("onboarging_workflows.id"))

 workflow = relationship("OnboardingWorkflow")

 visited_times = Column(Integer, default=0)

 should_visit = Column(Boolean, default=False)

This will create both the model and the tables we want at once.

It would be a good idea to create an UserOnboardingWorkflowDAO, that way we can abstract
the way we access onboarding workflow data and also we don’t expose db connection
instances outside of the DAO layer:

class UserOnboardingWorkflowDAO(BaseDAO[UserOnboardingWorkflow]):

 @staticmethod

 def get_by_user_id(user_id: int) -> List[UserOnboardingWorkflow]:

 # add code here

 @staticmethod

 def set_visited(user_id: int, onboarding_workflow_id: int) -> None:

 # add code here

Then we will add the 2 new endpoints mentioned above probably within the
CurrentUserRestApi:

 @expose("/onboarding_workflows/", methods=("GET",))

 @protect()

 @permission_name("read")

 @safe

 def get_my_onboarding_workflows(self) -> Response:

 # add your code here

@expose("onboarding_workflows/<int:onboarding_workflow_id>/set_visited",

methods=("PATCH",))

 @protect()

 @permission_name("write")

 @safe

 @statsd_metrics

 @event_logger.log_this_with_context(

 action=lambda self, *args, **kwargs:

f"{self.__class__.__name__}.patch",

 log_to_statsd=False,

)

 def set_onboarding_workflow_visited(self, onboarding_workflow_id: int)

-> Response:

 # add your code here

At this point we should have exposed the endpoints to the FE.

In the FE, we should create the 2 calls to the new endpoints above:

async loadOnboardingWorkflows(): Promise<QueryData[]> {

 // add code here

 const requestConfig: RequestConfig = {

 endpoint: '/api/v1/me/onboarding_workflows',

 };

}

async setOnboardingWorkflowVisited(onboardingWorkflowId: number):

Promise<QueryData[]> {

 // add code here

 const requestConfig: RequestConfig = {

 endpoint:

`/api/v1/me/onboarding_workflows/${onboardingWorkflowId}`,

 };

}

We can add a new plugging to wrap https://docs.react-joyride.com/ and then add some
configurations to it. These configurations are meant to be used to set JoyRide properties and
only expose what we are going to use from the library, that should look something like:​

 <OnboardingWorkflow

 name=”CREATE_DASHBOARD_TOUR”

 stepsOverrides={{step1: { content: <MyCustomContent />, placement:

‘left’, target: ‘component_class’ }}}

 run={run}

 continous

 />

Then we could just use this within a page.

For the migrations we could just use Alembic, see other migrations here:
superset/migrations/versions, the main idea is to create the onboarding workflows there and
assign them to the users.

We can also be jumping between pages for an onboarding workflow, we could use the query
params from the browser to pass down any needed flag or state in case the workflow is
complex enough that might need jumping between multiple pages.

https://docs.react-joyride.com/

Testing Plan

Since this needs to work at a fast pace, we should probably add happy path unit tests per each
component, endpoints and models added. Probably we can also add at least one single E2E
test, one for the FE and one for the BE testing a simple onboarding workflow.

Also we could test the library itself without the backend by using local storage to store the tour
steps and visits.

Tasks To Do
Backend ✅

1.​ Create the models for the onboarding workflows entities ✅
○​ PR: https://github.com/apache/superset/pull/37680

2.​ Add the DAO for the user onboarding workflow entity + tests ✅
○​ PR: https://github.com/reynoldmorel/superset/pull/1

3.​ Add the endpoint to load the onboarding workflows + tests ✅
○​ PR: https://github.com/reynoldmorel/superset/pull/2

4.​ Add the endpoint to set onboarding workflow as visited + tests ✅
○​ PR: https://github.com/reynoldmorel/superset/pull/2

Frontend ✅

1.​ Add the endpoint to load the onboarding workflows + tests ✅
○​ PR: https://github.com/reynoldmorel/superset/pull/3

2.​ Add the endpoint to set onboarding workflow as visited + tests ✅
○​ PR: https://github.com/reynoldmorel/superset/pull/3

3.​ Add new component to wrap the https://docs.react-joyride.com/ + tests ✅
○​ PR: https://github.com/reynoldmorel/superset/pull/4

4.​ Add onboarding workflow for creating dashboard from a none existing chart + tests ✅
○​ PR: https://github.com/reynoldmorel/superset/pull/5

5.​ Implement onboarding workflow for creating dashboard from a none existing chart +
tests ✅

○​ PR: https://github.com/reynoldmorel/superset/pull/5

PR having all the changes:

https://github.com/apache/superset/pull/37929

https://github.com/apache/superset/pull/37680
https://github.com/reynoldmorel/superset/pull/1
https://github.com/reynoldmorel/superset/pull/2
https://github.com/reynoldmorel/superset/pull/2
https://github.com/reynoldmorel/superset/pull/3
https://github.com/reynoldmorel/superset/pull/3
https://docs.react-joyride.com/
https://github.com/reynoldmorel/superset/pull/4
https://github.com/reynoldmorel/superset/pull/5
https://github.com/reynoldmorel/superset/pull/5
https://github.com/apache/superset/pull/37929

Release Plan

●​ We will need to put the feature behind a feature flag.
●​ We would need to split each task from above in a PR to avoid huge PRs, each PR will

be dependent on each other.

Benefits

●​ Scalable solution: we could add a UI at any point so the user can decide when to revisit
the onboarding workflow.

●​ We could extract important metrics about the behavior of the user for a given workflow in
the application. Metrics could let us know:

○​ Feature adoption
○​ How hard the application from the user perspective
○​ If the onboarding workflow is useful or not.

●​ Could probably help bring more users due to being more user-friendly.
●​ Centralized and reusable workflows
●​ Possibility of automating the onboarding in a longer future, not needing to code to build

the workflow

Drawbacks

●​ It is a complex solution
●​ Involves BE, FE, DB to work
●​ It will require time and work to be useful: one workflow might not be enough

Solution 2
Same as solution 1 but using https://docs.shepherdjs.dev/guides/install/.

Benefits

●​ Strong control over tour flow and positioning.
●​ Supports advanced features (e.g., modal overlays).

Drawbacks

●​ It has pricing for commercial applications (probably will not apply for superset)

https://docs.shepherdjs.dev/guides/install/

Solution 3
Same as solution 1 but using https://introjs.com/.

Benefits

●​ Fast setup, minimal config.
●​ Good for simple tours.

Drawbacks

●​ Less flexible than Joyride/Shepherd for complex logic.

Conclusions
We decided to go with solution 1 initially, this is because we are opened to move from Joyride
library in case it doesn’t work

Future Next Steps
●​ Add a CRUD of onboarding workflows, so we can avoid using Alembic migrations.
●​ Add a batch workflow assignment tool, so we can avoid using Alembic migrations.
●​ Support tracking user status in a tour. For example we should know if a workflow never

finished, the last step the user went through, the time the user spent in a step…

https://introjs.com/

	User Onboarding Tour TDD
	Administrativia
	Review Tracker
	Background
	Motivation
	Goals
	Non-Goals
	Solutions
	Solution 1
	High Level Design
	Diagram
	Description

	Low Level Design
	Testing Plan
	Tasks To Do
	Release Plan
	Benefits
	Drawbacks

	Solution 2
	Benefits
	Drawbacks

	Solution 3
	Benefits
	Drawbacks

	Conclusions
	Future Next Steps

