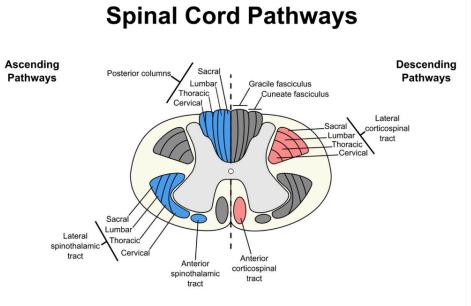


Episode 02: Basic Neuroanatomy and Physiology Shownotes

Barash CH 37, Pg 1009

HY Anatomy Facts


•

- Brain Compartments
 - Supratentorium
- Composed of cerebral hemispheres and dicenphalon (thalamus + hypothalamus)
 - Cerebral hemispheres
 - Four Lobes (Frontal / Temporal / Parietal / Occipital)
 - Primary somatosensory and motor cortex adjacent to central sulcus in parietal and frontal lobes

• Infratentorium

- Brainstem and Cerebellum
 - Brainstem composed of:
 - Midbrain
 - Pons
 - Medulla
 - Consciousness via reticular activating system
 - Brainstem contains CN nuclei for 3-12
 - Midbrain controls autonomic functions (respiratory / cardiovascular)
 - As well as reflexes (cough / gag,
 - pupillary reflexes)
- Brain receives 70% of blood supply from two internal carotids, 30% from two vertebral arteries
- Average CSF in adults is 150 cc
 - CSF is produced mostly in choroid plexus of lateral and third ventricles
 - CSF is reabsorbed in dural venous sinuses (primarily sagittal sinus via arachnoid villi and granulations)
 - Some goes into foramen magnum --> subarachnoid space
 - $\circ~$ Average production of CSF is 15-20 cc / hr

• Spinal Cord

© Lineage

Moises Dominguez

- Fig 1: Spinal Cord Pathways (Medbullets)
 - Dorsal Columns
 - Propioception and Light Touch
 - Lateral Spinothalamic Tract
 - Paiun and Temp
 - Outer white matter = lateral corticospinal tracts
 - Blood supply
 - One anterior spinal artery
 - Arises from 6-8 major radicular arteries
 - HY PIMP QUESTION
 - Largest radicular artery is Artery of Adamkiewicz
 - occurs at T11 or T12
 - Supplies T8 to conus medullaris
 - Supplies 2/3 of spinal cord
 - Two Posterior spinal arteries
 - Originates from posterior spinal arteries
 - Supplies dorsal horns and white matter
 - This is why tight blood pressure control is very important!

NEUROPHYSIOLOGY

• Brain Metabolic Needs

- 20% of total body O2 consumption
 - Cerebral Metabolic Rate of O2 Consumption (CMRO2)
 - Normal: 3 to 3.8 cc / 100 g / min
- 25% of body's glucose consumption
- Brain requires continuous supply of O2 and glucose --> irreversible injury after 4-5 minutes of global ischemia
- Cerebral Blood Flow Regulation via Flow-metabolism Coupling and Autoregulation
 - Occurs very quickly

0

- Normal Cerebral Blood Flow --> 50 cc / 100 g / min (or 750 cc / min)
 - Brain receives 15% of cardiac output
- Factors affecting Cerebral Autoregulation
 - MAP
- Maintained between 60 160 mmHg
 - Dynamic parameters depending on the person
- PaCO2
 - CBF linearly associated between 20 80 mHg
 - Change in PaCO2 of 1 mmHg correlates to similar change in CBF of 1-2 cc / 100 g / min
 - Below 20 --> maximal cerebral vasoconstriction
- O2 Tension
 - Minimal effect on CBF
- Fig 2. Deranged Physiology
- Cerebral Perfusion Pressure (CPP) = MAP ICP
 - Spinal Cord Physiology very similar to brain
 - Spinal Cord Perfusion Pressure (SCPP) = MAP SSSP (spinal arachnoid space pressure)
- Effects of Anesthetic Drugs on CBF
 - Propofol, etomidate, benzos, thiopental decrease CBF --> decreases CMRO2
 - Opioids have little effect on CMRO2, CBF, autoregulation, or PaCO2 responsiveness
 - HY Board: Ketamine increases CBF and CMRO2, little effect on autoregulation
 - \circ $\,$ Volatile anesthetics (iso / sevo / des) are direct cerebral vasodilators $\,$
 - Low effects at low doses
 - High doses (I.e. > 1 MAC), suppresses CMRO2
 - Nitrous Oxide
 - Direct cerebral vasodilator causes minimal effect to CMRO2
 - 0

PATHOPHYSIOLOGY

- Monro-Kellie Doctrine
 - Skull contains three main things: brain (1400 cc), CSF (150 cc), Blood (150 cc)
 - "Increase in volume of an intracranial compartment leads to rise in ICP unless matched by equal reduction in the volume of another compartment
- ICP
- HY: Normal = 7-15 mmHg
 - Poor Neurologic outcome with prolonged ICP above 20-25
- Cerebral-Elastance Curve
 - Elastance: E = dP / dV
 - Could be monitored with invasive cerebral and spinal monitoring
 - Three parts of the curve
 - 1: initial flat part = intracranial elastance low --> non pathologic states, changes are compensated easily
 - 2: Elbow of curve = can't compensate, elastance increases, small increases in volume --> rapid increase in ICP
 - 3: Super elastance, very sensitive
- Fig 3 Veterian Key
- Most common cause of increased ICP is cerebral edema
 - Three Types of Edema:
 - Cytotoxic
 - Increase in intracellular water
 - Cerebral ischemia, ionic pump fails to to work and accumulates ions
 - Vasogenic
 - Loss of BBB integrity --> accumulates extracellular water
 - Occurs in regions surrounding tumors
 - Decadron effectibe at decreasing only vasogenic
 - edema
 - Interstitial
 - Occurs in patients with hydrocephalus
 - --> CSF goes into intersitial space
- Other factors that cause intracranial hypertension
 - Increased CBV
 - Increased arterial inflow
 - Vasodilatory drugs

- Hypercapnia
- Severe hypoxemia
- Acidosis
- Decreased venous / CSF drainage
 - Decreased CSF absorption at arachnoid villa
 - Mass effect from tumors
- Tying Things Together: CPP
 - Cerebral Perfusion Pressure (CPP) = MAP ICP
 - You could control CPP by tight control of MAP (hence arterial line), and management of ICP through the flow metabolism curve and other drugs (e.g. decadron, mannitol, etc.)
- Clinical Presentation
 - Headache
 - Nausea / Vomiting
 - Papilledema
 - Cushing's Triad
 - Hypertension
 - Remember: CPP = MAP ICP
 - To keep CPP the same, increases in ICP requires increase in MAP
 - Bradycardia
 - Irregular Respiration
 - Feared Complication:
 - Pupillary dilation, oculomotor weakness, absent pupillary light reflex, cardiopulmonary arrest