
Note: The most recent version of this guide can be found at opensource-events.com.
Feel free to share widely. Have feedback? Please leave a comment.

The Open Source Project Guide: Hackathon/Sprint version

by Shauna Gordon-McKeon of OpenHatch

In order to get the most out of a workshop, hackathon or sprint, it’s important to plan ahead and
identify goals and tasks for helpers, as well as possible stumbling blocks. We’ve created the
following guide to help you plan. We’ve used our own project - OpenHatch - as an example
below.

The checklist version of this guide can be found at the very end of the document.

Contents
1. Defining goals

a. Overall goals
b. Event goals

2. Project setup
a. Contact info
b. Project structure
c. Development environments
d. Contributing changes
e. Verification

3. Defining tasks
4. Follow-up
5. Checklists

a. Detailed checklist
b. Basic checklist

6. Further resources
a. Open advice
b. open source cookbook
c. http://producingoss.com/

1. Defining goals

You want to be able to state clearly your goals for the event, as this gives your group something
to work towards. You can start by asking:

● What is the overall goal of your project?

You want a short (1 paragraph or less) answer to this question which you can use to

http://opensource-events.com/
http://openhatch.org/


entice potential contributors to your project. Details are great, but at this point, you
shouldn’t need to be too technical.

For example:

OpenHatch’s goal is to make the free software/open source community more
welcoming to newcomers. To do this, we provide curricula and logistical support
for running “Intro to Open Source” workshops, a website with open source tools,
“training missions” and a volunteer opportunity finder, and several other projects
in progress.

● What do you want to accomplish at this event?

Think about what, specifically, you’d like to get done at this event. You can break these
down by elements of your project, if you have more than one. It should be clear how
these event goals contribute to the overall goal of your project. At the same time, these
are not “tasks” - it should be necessary to break these goals down further in order to
accomplish them.

It’s useful to phrase these in terms of “Base” and “Reach” goals. Having modest base
goals gives you something to celebrate at the end of the event, while adding reach goals
lets you plan for the exciting scenario of having a large and/or effective team that’s able
to accomplish a ton.

In general, it’s better to have too many goals than too few, but make sure you prioritize
them. When you get to the task-breakdown part of this guide, focus on doing a thorough
job with each individual goal before moving on to the next one.

For example:

1. Make a new training mission:
a. Base goal: Pick a skill to create a new training mission around, and

design what the mission will look like. Create a mock-up of the mission.
b. Reach goal: Implement the mock-up, and user test it on volunteers from

the event.
2. Clean out issue tracker:

a. Base goal: Go through tracker and label issues by what type of “cleaning”
they need (Does a bug need to be verified? Does a patch need to be
tested? Does the feature need to be attached to a milestone?)

b. Reach goal: Address the added labels. (Verify bugs, test patches, assign
features, etc.)

2. Project setup



In our experience, project setup is the single biggest barrier to participation. We’ve seen (and
run!) events where the majority of time spent by participants was on setting up their
development environment and becoming acquainted with the project. Documenting and
improving the process beforehand can save everyone a lot of time and energy. If you know that
a part of your project will inevitably be time-consuming, make sure participants know to expect
that. Consider contacting participants ahead of time and trying to do some of the set-up
asynchronously before the event.

(If you’re a very new project, read the rest of this section with an eye for what you’ll want to
document as you build.)

All of the information below should be documented in a README at the top level of your source
repository. Other places put the info include a “Want to contribute?” section of your project
website, and/or you can include a link to the README in the signature of your mailing list or in
the status bar of your IRC channel.

● How to find the project’s community/maintainers

Contact information should be displayed prominently, as you may have remote
contributors, or contributors who want to start before the event. Make clear how to get in
touch with you in case they run into trouble with any subsequent steps. Types of contact
information can include:

● A link to your mailing list.
● Your IRC channel name and server (including link to IRC installation guide and

link to webchat version).
● Social media accounts such as Identica, Twitter, Facebook, if your project has

them.
● Maintainers’ personal contact information, if you feel comfortable giving it out.

For example:

OpenHatch has two places for contact info, which we try to keep updated and
consistent with each other. There’s our contact info in the documentation,
primarily linked to from our source code repository, and our contact info in the
wiki, primarily linked to from the website’s main page.

● The project’s structure

Describe the basic structure of your project. What are the biggest pieces and where are
they located? How do those pieces interact? Then break each piece down.

You don’t need to talk about every file or subdirectory of your project, but you don’t want

http://openhatch.readthedocs.org/en/latest/community/contact.html
https://openhatch.org/wiki/Contact
https://openhatch.org/wiki/Contact


to assume that what a script does, or how the files in a directory interact, or what
language a part of your project is in is obvious to a newcomer. Making those
assumptions turns getting access to you into the bottleneck resource for working on your
project.

Depending on the size and complexity of your project, this can be a pretty big
undertaking. At OpenHatch, we’re still working on getting the full structure completely
documented. We recommend doing a “top level” explanation of your project’s structure,
and then going into detail about areas that people commonly work on (or are likely to
work on at sprints or hackathons.)

For example:

A description of the top-level structure of the OpenHatch project can be found at
Project Overview. A description of the structure of OH-Mainline (the repository
that runs our website) can be found here.

● How to set up a local (“development”) environment

In order to contribute to your project, people will usually need to set up a local version of
the project where they can make and test changes. The more detailed and clearer your
installation/development guide, the better.

Installation will often differ depending on the operating system of the contributor. You will
probably need to create separate instructions in various parts of your guide for Windows,
Mac and Linux users. (If you only want to support development on a single operating
system, make sure that is clear to users, ideally in the top-level documentation.)

Here are common elements of setting up a development environment you’ll want your
guide to address:

● Preparing their computer
○ Make sure they’re familiar with their operating system’s tools, such as the

terminal/command prompt.
○ If contributors need to set up a virtual environment, access a virtual

machine, or download a specific development kit, give them instructions
on how to do so.

○ List any dependencies needed to run your project, and how to install
them.

● Downloading the source
○ Give detailed instructions on how to download the source of the project,

including common missteps or obstacles.
○ If there are multiple versions of the project, make clear which version they

http://openhatch.readthedocs.org/en/latest/getting_started/project_overview.html
https://github.com/openhatch/oh-mainline/blob/master/LAYOUT


should download.
● How to view/test changes

○ Give instructions on how to view and test the changes they’ve made.
This may vary depending on what they’ve changed, but do your best to
cover common changes. This can be as simple as viewing an html
document in a browser, but may be more complicated.

For example:

You can see OpenHatch’s version of this information in our Installation Guide.
Instructions on how to contribute changes can be found in handling patches,
which is linked to in the installation guide. Instructions for testing changes can be
found in the documentation for different changes one might make (for instance,
Documentation changes.)

● Contributing changes and feedback

How do contributors contribute their changes to the project? Do they submit a pull
request via Github? Do they generate a patch and attach it to an issue in an issue
tracker? Make sure this information is explicitly provided.

For example:

OpenHatch’s guide to submitting changes can be found here.

It’s also useful for people to know how they can give feedback/report bugs to the project.
If your project doesn’t have an issue tracker, consider creating one.

For example:

Issues with the Open Source Comes to Campus project can be reported here.
Most other issues with OpenHatch can be reported here.

● Verify that this documentation is complete/effective by testing on individuals who
haven’t used or contributed to your project before.

Find at least one person for each operating system to read your documentation and
attempt to install, make and test changes, and contribute the changes to the project.
(These can be simple, fake changes or, if your tester is willing, actual tasks.)

Make sure that any problems which arise during verification are added to the
documentation. Once the documentation has been verified, and a line to the top of your
guide which states what was verified and when.

http://openhatch.readthedocs.org/en/latest/getting_started/installation.html
http://openhatch.readthedocs.org/en/latest/getting_started/handling_patches.html
http://openhatch.readthedocs.org/en/latest/getting_started/documentation.html
https://github.com/openhatch/open-source-comes-to-campus/issues?direction=desc&sort=created&state=open
http://openhatch.org/bugs/


For example:

Development environment instructions tested successfully on Ubuntu 12.04 (on
2013-10-03), Mac OS X 10.8 (on 2013-10-01) and Windows XP (in Jan
2005).

You can see OpenHatch’s version of this here.

3. Defining tasks

Let’s return to the event goals we talked about in the first section. For each of these goals, we
should be able to break down the steps that need to be taken to reach them into discrete tasks.
These tasks should include a “plain english” summary as well as information about where to
make the changes (for instance, which files or functions to alter). We recommend including a
list of needed skills (e.g. “design skills”, “basic Python”, “English fluency”, “familiarity with the
command line”) and tools (e.g. “Mac development environment”). It’s also useful to include an
estimate of how much time the task will take, to label some tasks as higher or lower priority, and
to mark where one task is dependent on another.

We recommend using a wiki or similar planning document to keep track of tasks. OpenHatch
has a task-tracker that we use for our events - you are welcome to fork it and customize it for
your project/event, although you might want to wait as we’ll be making some big improvements
soon. Something as simple as an etherpad should also be just fine.

For example:

Reach goal: Address the added labels. (Verify bugs, test patches, assign features, etc.)
Task 1: Verify Bugs

● Skills/tools needed: Strong English language skills, ideally familiarity with virtual
machines to test on multiple OSs.

● Estimated time: ~15 minutes set up, ~20 min per bug (high variance)
● Get started: <Download the development environment> and make sure you can

run the project. Make sure you have an account on <the issue tracker> and are
familiar with how to add comments or change labels.

● For each bug: Try to reproduce the bug. Record the results in a comment,
including your operating system type and version #. If possible, test on multiple
browsers. If there are recent comments covering all three major OSs, add label
to bug “ready_for_maintainer_review”.

Once you’ve created this list you can use it when recruiting/assigning participants to your
project. (If event organizers have the bandwidth to recommend participants to projects based
on needed skills, they will be very glad for this information.)

http://openhatch.readthedocs.org/en/latest/getting_started/installation.html
https://github.com/openhatch/new-mini-tasks


4. Follow-up

Contributors may not be able to finish the tasks they are working on during the event. Or they
may want to continue participating in the project by working on other tasks. Thinking ahead
about how you will follow up on the event makes it easier to exchange information with
participants and plan the direction of your project.

We recommend asking each participant to answer the following questions about the tasks they
worked on. Giving them this list at the start of the event will help them document what they’re
doing as they go along.

For each task you worked on, please answer:
● What task did you work on?
● Please briefly document your workflow. What steps did you take, in what order,

and why?
● Where can I find the work you did at the event? This includes code,

documentation, mock ups, and other materials.
● If you created any accounts for the project, please list the site, account name,

and password.
● What obstacles did you encounter when working on this task? Do you have any

feedback for me to make the process better for future contributors?
● Would you like to stay involved in this project? If so, in what capacity?

If there is strong enthusiasm for continuing to work, we recommend planning a follow up
meeting at the event. If you’re all local, try setting a date 2-3 weeks after the event for you and
your team to meet at a local coffee shop, coworking space, or project night. If you’re remote,
set a date to meet on IRC or a google hangout. At the very least, get email addresses and/or
other contact info from anyone interested in following up, and contact them within 48 hours
thanking them for their help at the event.

5. Checklists

That’s a lot of advice! To help you keep track of each step, we’ve created two checklists for you.
The detailed version includes all of the advice above. The quick and dirty checklist includes the
elements of the above document which we think are most important. These represent the
minimum needed for a project to be included at an OpenHatch-run event. We highly
recommend you follow the full checklist.



DETAILED CHECKLIST

Defining Goals
❏ Write one paragraph description of overall project goal.
❏ Define “base” and “reach” goals for this particular event.

Project Setup
❏ In README, document:

❏ How to contact maintainers/project community
❏ Basic project structure
❏ How to set up the development environment

❏ Preparing the computer/installing dependencies
❏ Downloading the project
❏ Viewing/testing changes

❏ How to contribute changes
❏ Verify that your documentation is clear, ideally for Mac, Windows & Linux

individually
Defining Tasks
❏ Define tasks for contributors to work on, including for each:

❏ a brief summary
❏ where to make changes
❏ skills and tools needed
❏ optionally: estimate of time the task will take
❏ optionally: priority of task
❏ optionally: dependencies

❏ Create a resource such as a wiki for displaying and tracking the tasks
Follow Up
❏ Create/modify a list of questions to ask participants to capture their

knowledge/feedback
❏ Gather contact information from participants interested in following up



QUICK AND DIRTY CHECKLIST

Defining Goals
❏ Write one paragraph description of overall project goal.

Project Setup
❏ In README, document:

❏ How to contact maintainers/project community
❏ Basic project structure
❏ How to set up the development environment

❏ Preparing the computer/installing dependencies
❏ Downloading the project
❏ Viewing/testing changes

❏ How to contribute changes
❏ Verify that your documentation is clear for at least one of: Mac, Windows & Linux

Defining Tasks
❏ Define tasks for contributors to work on, including for each:

❏ a brief summary
❏ where to make changes
❏ skills and tools needed

Follow Up
❏ Provide your contact information for participants interested in following up


