Refraction of light

- 1. The refractive index of paraffin is 1.47 and that of glass is 1.55. Determine the critical
 - angle of a ray of light travelling from glass to paraffin
- 2. The diagram *figure 1* below shows a ray of light incident on glass air boundary:

fig. 1

A second ray strikes the boundary at the same point C at an angle of incident greater than \mathbf{a}^{o} .

- (i) On the diagram, draw the second ray before and after striking the boundary
- 3. a) State Snell's law
 - b) When does total internal reflection occur?
- c) The figure below represents a ray of light falling normally on the curved surface of a

semi- circular glass block A at an angle of 32° at O and emerging into air at an angle of 48°

Calculate the absolute refractive index of the glass of which the block is made.

(Assume air is a vacuum)

4. *Figure 2* below shows a ray of light traveling from glass to water

Calculate the angle θ if the refractive index of glass and water are $^3/_2$ and $^4/_3$ respectively (3mks)

5. Figure 3 shows light rays moving from medium 1 to medium 2. If the refractive index of medium

1 is $^4/_3$ and that of medium 2 is $^3/_2$. Calculate angle $\bf r$

6. (a) The diagram below shows a glass prism and an incident ray striking the face marked AB.

The critical angle of the glass is 42°. Use it to answer the questions that follow:-

- (i) Complete the diagram showing the path of the emergent ray
 - (ii) Calculate the angle of refraction of the resultant emergent ray

- 7. (a) (i) What is a critical angle as used in refraction of light?
 - (ii) State one condition under which total internal reflection occurs
 - (b) Calculate the value of the critical angle **c** in the figure below

where m = linear magnification , V = linear magnification and f is the focal length of lens

(ii) In the table below shows readings obtained out of an experiment to determine focal length

of a converging lens

Image distance V (cm)	17.1	18.3	20	23	30
Object distance (u)	40	35	30	25	20

Plot a graph of $\underline{1}$ against $\underline{1}$ and determine the focal length of the lens from the graph.

V u (Use the graph paper provided).

8. a) The Fig.9 shows a ray of sunlight incident to face AB of a glass prism. -•

- i) Complete the diagram showing the observation on the screen.
- ii) Explain the observation on the screen.
- iii) State why the spectrum formed above is not pure.
- b) i) You are provided with four equilateral prisms and four convex lenses. Sketch a diagram

showing how all the eight can be arranged to make a simple prism binoculars.

ii) State **one** reason why prisms produce better optical instruments than plane mirrors.

Refraction of light

1.
$$a\eta_{p} = 1.47 \text{ and } a\eta_{g} = 1.55$$

$$g\eta_{p} = g\eta_{a} x a\eta_{p}$$

$$= a\eta_{p}$$

$$a\eta_{g}$$

$$= 1.47 = 0.9484$$

$$1.5$$

$$Sin C = 1 = 0.9484$$

$$\eta$$

$$C = sin^{-1}(0.9484)$$

$$C = 71.5^{\circ}$$

- 2. (i) for incident and reflected ray
 - (ii) The ray undergoes total <u>internal reflection</u>. Since angle of incident is greater than a° the <u>critical angle</u>.
- 3. a) The ratio the $\sin \emptyset$ of the angle of incidence to the $\sin e$ of the angle of refraction

is a constant for a pair of media

b) When a ray is moving from an optically dense medium to a less optically dense

medium or when the angle of incidence in the optically dense medium is greater than the critical angle

c)
$$a_g^n = \frac{\sin i}{\sin r}$$

= $\frac{\sin 48^\circ}{\sin 32^\circ}$
= 1.40, Accept 1.402

d) Separation of colours of light from white light

4.
$$gnw = gna \ x \ anw$$

 $= \frac{2}{3} x^{4}/3$
 $= \frac{8}{9}$
 $\frac{8}{9} = \frac{\sin \theta}{\sin 40}$
 $\sin \theta = \frac{8}{9} \sin 40 = 0.5713$
 $= 34.84^{\circ}$

5. If the refractive index of medium 1 is $^4/_3$ and that of medium 2 is 3/2. Calculate angle r $n1\sin\theta 1 = n2\sin\theta 2$

$$\frac{4}{3} \sin 35 = \frac{3}{2} \sin \theta 2
 \sin \theta 2 = \frac{4}{3} X^{2}/_{3} \sin 35 = 0.5098
 \theta 2 = 30.654
6. a) i
 ii) $n = \underline{1}$
 sin 42
 Sin 25 = I\sqrt{ Sin r} R
 Sin 25 = \sin 42\sqrt{ Sin r}
 Sin r
 Sin r = \frac{\sin 25}{\sin 42}
 = 0.631593$$

- 7. (a) (i)-When a ray is moving from an optically denser medium to a less optically dense medium.
 - When the angle of incidence in the optically denser medium is greater than the

critical angle (any 1)

 $r = Sin^{-1} (0.631593)$

= 39.17° (accept 39.2°) $\sqrt{}$

(b)
$$Sin \ C = \underline{n_2} = \underline{1.3} = 0.866$$

 $n_1 \quad 1.5$
 $\angle C = sin^{-1}0.866 \quad \therefore \angle C = 60.1^{\circ}$

- (c) (i) From the len's formula $1 = {}^{1}/_{V} + {}^{1}/_{u}$ and dividing both sides by V, $V = 1 + {}^{V}/_{u}$, but ${}^{V}/_{u} = M$ ${}^{V}/_{f} = 1 + M$ and making M the subject; $M = {}^{V}/_{f} 1$
- (ii) Graph: scale used (1mk)
 - Labeling axis
 - Straight line
 - Points
 - Gradient/slope

Refraction of light

1.
$$a\eta_{p} = 1.47 \text{ and } a\eta_{g} = 1.55$$

$$g\eta_{p} = g\eta_{a} x a\eta_{p}$$

$$= a\eta_{p}$$

$$= 1.47 = 0.9484$$

$$1.5$$

$$Sin C = 1 = 0.9484$$

$$\eta$$

$$C = sin^{-1}(0.9484)$$

$$C = 71.5^{\circ}$$

- 2. (i) for incident and reflected ray
 - (ii) The ray undergoes total <u>internal reflection</u>. Since angle of incident is greater than a^o the critical angle.
- 3. a) The ratio the $\sin \emptyset$ of the angle of incidence to the $\sin e$ of the angle of refraction

is a constant for a pair of media

b) When a ray is moving from an optically dense medium to a less optically dense

medium or when the angle of incidence in the optically dense medium is greater than the critical angle

c)
$$a_g^n = \frac{\sin i}{\sin r}$$

= $\frac{\sin 48^\circ}{\sin 32^\circ}$
= 1.40, Accept 1.402

d) Separation of colours of light from white light

4.
$$gnw = gna \ x \ anw$$

 $= \frac{2}{3} x^{4}/_{3}$
 $= \frac{8}{9}$
 $\frac{8}{9} = \frac{\sin \theta}{\sin 40}$
 $\sin \theta = \frac{8}{9}\sin 40 = 0.5713$
 $= 34.84^{\circ}$

5. If the refractive index of medium 1 is $^4/_3$ and that of medium 2 is 3/2. Calculate angle r $n1\sin\theta 1 = n2\sin\theta 2$

$$^{4}/_{3} \sin 35 = ^{3}/_{2} \sin \theta 2$$

 $\sin \theta 2 = ^{4}/_{3} X^{2}/_{3} \sin 35 = 0.5098$
 $\theta 2 = 30.654$

6. a)
$$i$$
 $ii) n = 1$
 $sin 42$
 $Sin 25 = I \sqrt{$

Sin r R
Sin 25 = sin
$$42\sqrt{25}$$

Sin r
Sin r = Sin 25
Sin 42
= 0.631593
r = Sin -1 (0.631593)
= 39.17° (accept 39.2°) $\sqrt{25}$

- 7. (a) (i)-When a ray is moving from an optically denser medium to a less optically dense medium.
 - When the angle of incidence in the optically denser medium is greater than the

critical angle (any 1)

(b)
$$Sin\ C = \underline{n_2} = \underline{1.3} = 0.866$$
 $n_1\ 1.5$

$$\angle C = sin^{-1}0.866 \quad \therefore \angle C = 60.1^{\circ}$$
(c) (i) From the len's formula $1 = {}^{1}/_{V} + {}^{1}/_{u}$ and dividing both sides by V , $V = 1 + {}^{V}/_{u}$, but ${}^{V}/_{u} = M$
 ${}^{V}/_{f} = 1 + M$ and making M the subject;

- (ii) Graph: scale used (1mk)
 - Labeling axis
 - Straight line

 $M = V_f - 1$

- Points
- Gradient/slope

- Gratient/stope
$${}^{1}/_{V} = {}^{1}/_{u} - {}^{1}/_{f}$$

$${}^{1}/_{f} = {}^{1}/_{u} + {}^{1}/_{V} \text{ or } {}^{1}/_{V} = {}^{1}/_{f} - {}^{1}/_{u}$$

$$Gradient = Negative$$

$${}^{1}/_{V} \text{ Intercept } = {}^{1}/_{f}$$