

Real Time Analysis of a Photoresistor using GUI & Arduino

MatLab Project

Bryce Abernathy & Christian Fontejon

EGEE 215 - MatLab

Professor Saravana Raman

May 7, 2019

​ We first started this project by planning to read a potential difference across an LED and

then to create a graph of voltage vs. time that would be running in real time using a GUI. We

were going to be doing this through the use of arduino and matlab. However, as we began to

tackle this project, we quickly ran into complications and gradually worked our way to what our

final project now is. That is, using a photoresistor instead of an LED. There were several steps

that we took to get to our final project and we will explain these steps later on in this report. But

first, let us briefly explain the tools we will be using.

​ A Photoresistor, also referred to as a Light Dependent Resistor or photocell, is a resistor

whose resistance decreases when the intensity of the light increases. It is commonly used as a

sensor to detect changes in brightness. When light falls onto the photoresistor, electrons absorb

energy, breaking the bonds with parent atoms, creating what is known as free electrons. Free

electrons that are moving freely from one place to another carry an electric current. The amount

of electric current flowing through the system depends on the number of free electrons

generated. An increase in electric current means a decrease in resistance. This means that the

resistance of the photoresistor will decrease when more light is exposed. For example,

streetlights often use photoresistors to detect when it should turn on. When the surrounding light

falls onto the photoresistor, it causes the streetlight to turn off. When there is no light, the

photoresistor will cause the street light to turn on. A few advantages to photoresistors are that

they are small in size, have a low cost, and that they are easy to carry from one place to another.

The only downside to them is that the accuracy of photoresistors are very low, meaning that they

do not always function as they are supposed to.

​ Arduino is an open-source platform used for building and designing electronics projects.

Arduino consists of both a physical programmable circuit board and its IDE (Integrated

Development Environment) that can run on any computer. With the software, you are able to

write and upload code to the physical board. The Arduino IDE uses a simplified version of C++,

making it easier for users to learn to program. Arduino hardware and software was designed for

really anyone interested in creating interactive objects or environments. The Arduino hardware

allows you to interact with buttons, LEDs, motors, speakers, GPS units, cameras, the internet,

personal devices, etc.

A GUI (Graphical User Interface) is an interface that uses icons as well as other visual

indicators to interact with electronic devices rather than just text and a command line. A GUI

uses windows, icons, and menus to carry out commands, such as opening, deleting, and moving

files. GUI operating systems can be navigated using both a mouse and a keyboard, which can be

used for keyboard shortcuts and arrow keys. GUI operating systems are very intuitive and easy

to learn because commands do not have to be memorized like in a command line operating

system. A few recognizable GUI operating systems may be Microsoft Windows, Apple’s

macOS, Chrome OS, and Linux’s Ubuntu.

​ As we explained the tools we were using, we will now discuss the use of them in our first

phase of our project. As mentioned, we initially started under the idea that we could read a

voltage through an LED and then graph that voltage over time to create a nice graph on matlab.

Before we discuss the results, let us discuss first how we tackled this initial idea. We first started

by creating the GUI. We knew that we were going to need the graph, and a slider that we could

use to control the voltage going through the LED. The GUI is very easy to build so let us not

explain the dragging of boxes to create it but rather the brains behind it, the code. The GUI

creates a format of code once one has saved it and lets the coder begin to customize within it. We

first had to figure out where to place the code within all the different functions and thanks to the

internet, we understood where to put our code. We then stated by creating a global variable a and

then declaring a as the arduino. The reason we are clearing it is because matlab does not like

having multiple objects being declared under the same variable. This is the error you would get if

you do not clear a:

This is the code for setting up arduino:

This is done to allow matlab to communicate with arduino. And I should mention that to even

declare arduino in matlab, one must download the arduino hardware support package that matlab

has on their website. Furthermore, once arduino is now declared and global, we can begin to use

it in other functions. This leads us to the main code as it is the only other code we shall need to

implement our desired results. Here is the code we developed:

As you can see, we declared our global variable a and then moved to the meat of the code. We

created an infinite while loop, that way we can read in real time, and then went to work inside of

it. We started reading the voltage passing the LED through the readVoltage function and then

stored it in voltage. The next part is how the slider works. When we move the slider, the value

that it reads will then get stored in sliderVal. We then had to turn that into a number which is

what the set() function is effectively doing. After we can get the slider number, we should send

that number as voltage to our LED. This is done using matlab's writePWMVoltage() function and

you can see that we are sending that voltage through Digital Pin 11 which is capable of PWM.

​ After we got the code for the hardware working properly, we moved to creating the graph

on our GUI. We created a variable x that was equal to to itself for the x-axis and the voltage

being the y-axis. We then plotted x to create the graph and set a line width for spatial purposes.

Then, we set our x and y axis lengths to fit the graph properly. After that, we made sure we had a

grid and paused the delay as if we did not, the graph would run too fast to make sense of. And

after all those steps, we ended our loop.

Here was the result:

​ Once we ran our GUI, we began to notice some unwanted results; our graph would reset

each time the slider moved and it would also not change on the y - axis. It stayed at exactly the

same position. Something was surely wrong with our code and or what we were trying to

accomplish was possibly not possible. It took us quite a while to finally agree that it was the

latter that was the problem and not the code. We discovered, or should I say rediscovered, that

the LED acts just like a boolean. It is either true or false. In our case, it is either high or low.

Since we are using PWM to send the voltage through the LED, it is impossible to read it using

matlabs readVoltage function. We tried using both digital and analog pins to read the voltage and

both had the same unworking results. This then led us to move on to our next idea, using a

potentiometer instead of the built in GUI slider.

​ Our code is primarily the same as it was before. We set up arduino, made it global, and

then got to work in our main code.

Our code was very similar to its predecessor but had some slight alterations. Inside of our infinite

while loop, we first are reading the voltage at analog pin 0 which is connected to our

potentiometer. We then had a text box in our GUI that was set up to display the voltage through

our potentiometer. We then used the potentiometers voltage number to control the voltage going

through the LED. After that, we then tried to read the voltage as before to see if that would make

a difference in our graph. And lastly, we set up the graph.

The result:

We observed when we ran the GUI that we still were not getting the results we wanted.

We were not getting the voltage passing through the LED but the voltage from the potentiometer.

We were able to get a nice graph due to fact that the read voltage function only works when

reading from an analog pin. Consequently, we knew that the potentiometer was not getting the

results we wanted and that reading a voltage through an LED is an impossible task. So we were

forced to again reform our initial project and mold it into what it is now.

​ We knew we had to use the analog pin and that led us to grapple with different hardware

tools we could potentially use. It was clear after researching that a photoresistor would be a

perfect candidate for what we were trying to accomplish. Not only was it possible to use the read

voltage function on matlab, but we could also get a riveting result that would work beautifully in

real time and make for an applicable graph. We built our GUI with a graph and a enter box to fill

in how long we wanted our graph to run. The code started off the same as before; we created a

global variable a and then declared a as arduino. We first began by creating code to get the

amount of samples the user wants to input. Basically, how long they want the graph to run.

The code basically allows the user to input a number of samples into the text box. We then will

use that number of samples into our main code.

This time, instead of using an infinite while loop, we implemented a for loop which run from one

to whatever the user entered as their number. This ultimately gives the user more control of the

graph. We then read the voltage of the photoresistor and graphed it. The rest of the code is the

same as before except for the axis in which the x parameter is set by the user in the number of

samples that they want.

 Implementing the code was as easy as ever due to the significant amount of time we had

already spent on creating a real time functioning graph from our previous project attempts. When

we ran our code, we experienced some self gratifying pleasurable results; it was working exactly

as we wanted and expected it to.

The result:

​ It was a relief to see it in action and quite enjoyable. It was working as a result from the

readings of voltage coming through an analog pin. We then could read precise numbers and

graph it effectively in our GUI. But we did not stop there. We added in an LED to see its effects

play out on the photoresistor. Afterall, our initial project revolved around an LED and it only

made sense to have it apart of our final project as well. To implement the LED we modified the

GUI with two buttons: turn on and turn off. Those two respectively would turn the LED on and

off. As we saved the GUI, the code in matlab added in two new functions. We then simply added

to those function by simply declaring a (which is global and also the arduino) and then by using a

matlab arduino function to write voltage to the correct pin. This can be seen here:

There are many applications for photoresistors within our technology driven society. A

great example of photoresistors in our everyday lives are the ones used in streetlights.

Photoresistors are used to control when the light should turn on and when the light should turn

off. When the surrounding light falls onto the photoresistor, it causes the streetlight to turn off.

And there is absence of light, the photoresistor causes the street light to turn on. A few more

applications of photoresistors may include various devices such as alarm systems, night-lights,

camera light meters, clock radios, audio compressors, etc. They are additionally utilized in

dynamic compressors together with a little radiant or neon light, or light-discharging diode to

control gain reduction. A typical utilization of this application can be found in numerous guitar

amps that join a locally available tremolo effect, as the wavering light fluctuations control the

dimension of signal feeding through the amplifier circuit. The photoresistor is mostly utilized as

a light sensor. They are often used when it is required to detect the presence and absence of light

or measure the intensity of the light - the application in which we test and use for our very own

project. ​

In summary, we first started this project under the impression that we can graph the

voltage through an LED. This of course was a fallacious thought as the LED uses a digital pin

which in turn, can only read either high or low and we saw that in effect in the video. We moved

to a potentiometer which gave us a nice graph due to the use of the analog pin and the illusion

that we got our project to work. That was because we were only reading the voltage through the

potentiometer and not through the LED. Lastly, we discovered the photoresistor and how we

could use it to display the light intensity using a Voltage vs Time graph.

​ In reality the initial idea we had was possible but only when using the proper devices.

Since we already had all the code from our previous attempts, implementing the photoresistor

was as easy as one plus one. Overall, our failures led to a better understanding of what we were

actually trying to accomplish and resulted in a pretty neat project.

Works Cited

“MATLAB.” MathWorks, www.mathworks.com/products/matlab.html.

“Photoresistor.” Physics and Radio Electronics,

ttps://www.physics-and-radio-electronics.com/electronic-devices-and-circuits/passive-co

mponents/resistors/photoresistor.html

