Exercice ①

Déterminer l'ensemble de définition de fonctions suivantes:

$f_1: x \boxtimes x^3 + 12x - 5$	$f_2: x \ \boxtimes \ \frac{-2x+4}{5x+3}$
$f_3: x \boxtimes \frac{\sqrt{x}}{2x^2 + 2x - 4}$	$f_4: x \ \mathbb{X} \ \frac{4x^2 - 5}{\sqrt{2x^2 + 2x - 4}}$
$f_5: x \boxtimes \frac{\sqrt{2-x}}{ x+2 -3}$	$f_6: x \ \mathbb{X} \ \sqrt{\frac{2-x}{4x+2}}$
$f_7: x \boxtimes \frac{\sqrt{2-x}}{\sqrt{4x+2}}$	$f_8: x \ \mathbb{X} \ \frac{\sin^2(x)}{\cos^2(x) - 1}$

Exercice 2

Etudier la parité de fonctions suivantes :

$$f_1: x \boxtimes |x| - \frac{1}{x^2}$$

$$f_1: x \boxtimes |x| - \frac{1}{x^2}$$
 $f_4: x \boxtimes x^2 + x - 3$

$$f_2: x \boxtimes \frac{x}{x^2 - 1}$$

$$f_2: x \boxtimes \frac{x}{x^2-1}$$
 $f_5: x \boxtimes |x-1|-|x+1|$

$$f_3: x \boxtimes \sqrt{x} + 1$$

$$f_3: x \boxtimes \sqrt{x} + 1$$
 $f_6: x \boxtimes \sin(x) - x \cos(x)$

Exercice (3)

Dresser le

tableau de

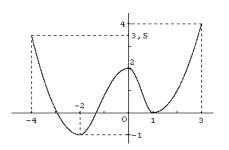
variation de la

fonction f

donnée par sa

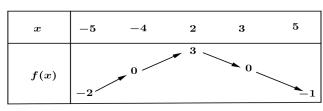
courbe

suivante:



Exercice (4)

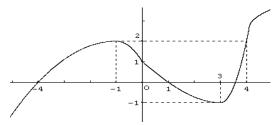
On donne le tableau de variation d'une fonction f définie sur l'intervalle [-5,5].



- 1) Dessiner une courbe susceptible de représenter la function f.
- 2) Combien de solutions a l'équation f(x) = 0? Donner ces solutions.
 - 3) Indiquer le signe de f(x).

Exercice (5)

La courbe (C_f) ci-dessous est la courbe d'une fonction f • On précise de plus que f(3,5) = 0•



- 1) Donner l'ensemble de définition de f .
- 2) Dresser le tableau de variation de f.
- 3) Résoudre graphiquement les inéquations : $f(x) \ge 0$ et $f(x) \boxtimes 0$.
- 4) Résoudre graphiquement l'inéquation : $f(x) \ge 2$.
- 5) On considère les fonctions g et h définie par

$$g(x) = \sqrt{f(x)}$$
 et $h(x) = \frac{4x - 5\sqrt{x}}{f(x)}$. Donner D_g et

Exercice 6

Tracer une courbe susceptible de représenter la

fonction f sachant que:

- . f est définie sur l'intervalle [0,5]:
- . f est croissante sur cet intervalle ;

$$f(0) = 1$$
 et $f(5) = 4$.

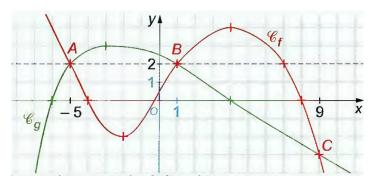
Exercice 7

Tracer une courbe susceptible de représenter la $f \quad \text{sachant que} :$

- . f est définie sur l'intervalle [-3,3];
- . f est décroissante sur $\begin{bmatrix} -3,-1 \end{bmatrix}$;
- . f est croissante sur $\begin{bmatrix} -1,3 \end{bmatrix}$;
- Pour tout $x \in [-3,3]$, $-1 \le f(x) \le 4$.

Exercice (8)

Les fonctions f et g sont définies sur IR ; leurs représentations graphiques sont données ci-dessous.



Résoudre graphiquement ce qui suit :

g(x) = 2	f(x) = 7	f(x) = 2
$g(x)$ \boxtimes 2	$f(x) \ge 2$	g(x) = f(x)
$g(x) \boxtimes f(x)$	$g(x) \ge f(x)$	$g(x) \ge 0$

Exercice 9

Soit f une fonction numérique définie par :

$$f(x) = x + \frac{4}{x}$$

- 1) Déterminer D_f l'ensemble de définition de f .
- 2) Montrer que f est impaire.
- 3) Montrer si a et b deux nombres réel distincts non nuls, alors : $\frac{f(b) f(a)}{b a} = \frac{ba 4}{ba}$.

4) Etudier les variations de f sur chacun des intervalles $\begin{bmatrix} 2, +\infty [et]0, 2 \end{bmatrix}$.

5) En déduire les variations de f sur chacun des intervalles $]-\infty,-2]$ et [-2,0[.

6) Dresser le tableau de variations de f sur D_f .

Exercice 10

Soit f une fonction définie par : $f(x) = -x^2 + 2x$

1) Déterminer D_f l'ensemble de définition de f .

2) Montrer que 1 est un maximum de f sur D_f .

3) Montrer si a et b deux nombres réel distincts de D_f , alors : $\frac{f(b)-f(a)}{b-a} = 2-a-b$

4) Etudier les variations de f sur chacun des intervalles $\begin{bmatrix} 1; +\infty[& \text{et} &]-\infty; 1 \end{bmatrix}$.

5) Dresser le tableau de variations de f sur D_f .

6) On considère la fonction g définie par : $g(x) = -x^2 + 2|x|$

a) Déterminer D_g l'ensemble de définition de g .

b) Montrer que pour tout x de IR^+ , on a: g(x) = f(x)

c) En déduire le tableau de variation de g.

Exercice 11

Soit f une fonction définie par : $f(x) = \frac{2x-5}{2-x}$.

1) Déterminer D_f l'ensemble de définition de f .

2) Dresser le tableau de variations de f sur D_f .

3) Constuire la courbe de f dans un repère orthonormé.

4) On considère la fonction g définie par :

$$g(x) = \frac{2|x|-5}{2-|x|}$$

- d) Déterminer D_g l'ensemble de définition de g .
- e) Etudier la parité de g .
- f) En déduire le tableau de variation de g.
- g) Constuire la courbe de g dans le meme repère.

Exercice 12

Soient f et g deux fonctions numériques définies

par:
$$f(x) = -2x^2 + 4x$$
 et $g(x) = \frac{x}{x-1}$.

- 1) Déterminer la nature de ${}^{(C_f)}$ la courbe de f .
- 2) Donner le tableau de variations de $\,f\,$.
- 3) A)-Construire (C_f) .
- **B)-** Resoudre graphiquement dans $D_f: f(x) = 3$,

$$f(x) \ge 3$$
 et $f(x) \mathbb{Z} 3$.

- 4) Déterminer la nature de ${}^{(C_g)}$ la courbe de g .
- 5) Donner le tableau de variations de $\,^g\,$.
- 6) A)-Construire (C_g) dans un le meme repère.
- **B)-** Resoudre graphiquement dans D_g :

$$\frac{x}{x-1} = -2x^2 + 4x \quad \frac{x}{x-1} \le -2x^2 + 4x$$

Exercice 13

On considère le triangle ABC

et H le projeté orthogonal de

A sur [BC] . Le point M est

un point de [BC]

On donne AH = 4, BC = 7,



1) Dans quel intervalle le nombre *x* peut-il varier ?

- 2) On note f(x) l'aire du triangle ABM.
- A) Faire deux dessins, le premier avec x = 4, le second avec x = 2. Calculer f(4) et f(2).
- **B)** Exprimer f(x) en fonction de x.
- Que peut-on dire de l'aire du triangle ABM lorsque x augmente, c'est à dire lorsqu'on déplace le point M vers le point C ? Quel est le sens de variation de f?
- 3) On note g(x) l'aire du triangle AMC.
- A) Calculer g(4).
- **B)** Exprimer g(x) en fonction de x.
- **C)** Quel est le sens de variation de la fonction *g* ?
- 4) Résoudre l'équation f(x) = g(x): Par le calcul et par des considérations géométriques.