

khushalsagar@, vmpstr@

SET and Viewports
 Aug 8, 2022

OVERVIEW

The Web platform has multiple viewport concepts that impact layout or viewport visible content

in the following cases:

●​ Root Scrollbar: When the root element on the page has a static scrollbar which changes

the area available to the web content.

●​ UI Interfaces: Interfaces like the URL bar or a bottom bar on mobile.

●​ On screen keyboard (OSK): A virtual keyboard which is displayed next to the web

content.

●​ Pinch Zoom: The page scale is changed with a pinch-zoom gesture on mobile devices.

Landing Viewport-relative Units provides an excellent summary of these viewport concepts and

how they change in the cases above. The aim of this document is to clarify how the root snapshot

should be generated in each of these cases and the UA CSS applied for default animations. The

latter also includes cases where the viewport size is different in the outgoing and incoming DOM

states.

CURRENT STATUS

The root snapshot is sized to the layout viewport and captures the area covered by this viewport.

The UA CSS for sizing/positioning the generated pseudo elements is as follows:

html::page-transition(root) {

 position: fixed; inset: 0;

}

html::page-transition-container(root) {

 position: absolute;

 top: 0; left: 0; right: 0; bottom: 0;

}

https://docs.google.com/document/d/10G_yd_ekZ3GiMYLTV399SBEA6Numa2cSehg7XJGs7hk/edit#heading=h.galszn3gnwwq

html::page-transition-outgoing-image(*),

html::page-transition-incoming-image(*) {

 position: absolute;

 inset-block-start:0;

 inline-size: 100%; block-size: auto;

}

An implicit assumption in the CSS above is that the layout viewport is not resized during a

transition. The rendering when animating between layouts where the layout viewport shrinks, for

instance if the incoming DOM induces a root scrollbar but the outgoing DOM does not, is as

follows:

●​ When the DOM switches to the new layout which reduces the layout viewport bounds, the

snapshot is immediately scaled to match the new width.

●​ The new snapshot is sized to the new layout viewport bounds and requires no scaling

since it matches the size of its replaced pseudo-element. The animation is then a simple

cross-fade between the 2 snapshots.

PROPOSAL

The abrupt change in the size of the root snapshot is visually jarring.

Capture and Animate Layout Viewport Size

This proposal is to retain the behaviour to capture the layout viewport in the snapshot but

animate this size change similar to other shared elements with the following CSS:

@keyframes page-transition-container-anim-root {

 /* This is the layout viewport bounds for the outgoing DOM. */

 from { width: 110px; height: 110px; }

}

html::page-transition-container(root) {

 position: absolute;

 top: 0; left: 0;

 /* This is the layout viewport bounds for the incoming live DOM.

 It updates whenever the viewport changes midway in the transition. */

 width: 100px; height: 100px;

 animation: page-transition-container-anim-root;

}

The existing CSS for html::page-transition-*-image scales the snapshot to match the

container width as it animates and the height is scaled such that the aspect ratio remains

unchanged.

For the pinch-zoom case, the CSS sizes will need to exclude the page-scale factor (similar to

device-scale factor) since it is applied later in the stack.

A con of this approach is that for cases like pinch-zoom, we’ll be capturing a scaled snapshot

which will include a significant area outside the visual viewport. This can be quite wasteful of gfx

memory.

Capture Large Viewport

This proposal is to change the root snapshot to be padded to a consistent size which is

unaffected by dynamic UI interfaces like omnibox, OS keyboard and scrollbars. This lines up with

the CSS large viewport concept except the large viewport value excludes non-overlay scrollbars.

The padded region will depend on the position of the layout viewport with respect to the large

viewport.

Figure: This assumes the iOS behaviour where OSK doesn’t resize the layout viewport. The red dashed box is the layout

viewport and the UI interfaces will be the additional padding in the snapshot.

The default CSS applied to position these snapshots is as follows:

html::page-transition {

 /* Since fixed position elements are positioned with

 respect to the layout viewport, the top/left values are computed by

 the browser to ensure the origin of the page-transition pseudo-element

 aligns with the origin of the large viewport.

 For example, top here accounts for the omnibox height. */

 position: fixed;

https://drafts.csswg.org/css-values-4/#large-viewport-size

 top: -10px;

 left: 0px;

 /* These bounds use physical pixel values to include the area covered by

 non-overlay scrollbars. */

 width: 300px;

 height: 1000px;

}

html::page-transition-container(root) {

 position: absolute;

 top: 0;

 left: 0;

 width: 100%;

 height: 100%;

}

Since the bounds for the container element remain fixed to the large viewport dimensions, no

size animations are necessary for the root to root animation. For the cases where this does

change (like a window being resized), we could simply finish the transition.

For a root to shared element animation, the keyframes generated animate the width/height of the

container pseudo-element from the large viewport bounds to the shared element bounds.

@keyframes page-transition-container-anim-root_to_element {

 from {

 width: 300px;

 height: 1000px;

 transform: none;

 }

}

html::page-transition-container(root_to_element) {

 width: 100px;

 height: 100px;

 /* This transform positions the incoming element’s border-box with

 respect to the large viewport. */

 transform: translate(100px, 100px);

 animation: page-transition-container-anim-root_to_element 0.25s both;

}

Capture and Animate Visual Viewport

TODO: Fill this section

ROUGH NOTES

●​ Scrollbar switch is immediate. We could fade-in/fade-out for that but won’t allow devs to

customise it.

●​ Since user interaction is suppressed during the transition, animation of UI interfaces like

omnibox can not be triggered from a user gesture but the browser forces the omnibox to

become visible on URL changes for security reasons.

	SET and Viewports
	OVERVIEW
	CURRENT STATUS
	PROPOSAL
	Capture and Animate Layout Viewport Size
	Capture Large Viewport
	Capture and Animate Visual Viewport

	ROUGH NOTES

