
Implement Connected Components Algorithms for
pgRouting by the Boost Graph Library

1. Contact Details
2. Title
3. Synopsis
4. Benefits to Community
5. Deliverables
6. Related Work
7. Biographical Information
8. Timeline
9. Studies

What is your school and degree?
Would your application contribute to your ongoing studies/degree? If so, how?

10. Programming and GIS
Computing experience
GIS experience:
GIS and pgRouting programming:

11. GSoC participation
12. Proposal: Connected Components Algorithms

Introduction
Versions
Attention
Description of the edges_sql query for the following proposed functions
Connected components

Example
Demo slides
Use the BGL
Proposed function for pgRouting
About pgr_labelGraph function

Strongly connected components
Example
Demo slides
Use the BGL
Proposed function for pgRouting

Biconnected components
Example
Demo slides
Use the BGL
Proposed function for pgRouting

Analyze pgRouting Sample Data
Use the BGL
Initial setup
Results

13. Future Directions

1

1. Contact Details
Name: Maoguang Wang
Nickname: mg
Country: China
Email: xjtumg1007@gmail.com
Phone: +86 18992859919
Github: https://github.com/xjtumg
Personal blog: www.xjtumg.me
Twitter: XJTUmg

2. Title
Implement Connected Components Algorithms for pgRouting by the Boost Graph Library.

3. Synopsis
Connected components algorithms are used to analyze graph and solve problems (like
2-satisfiability problem). There are three parts of connected components algorithms in the 1

Boost Graph Library (BGL),
1.​ Connected components algorithm.
2.​ Strongly connected components algorithm.
3.​ Biconnected components algorithm.

I am proposing to add those BGL functionalities to pgRouting during this GSoC period.

4. Benefits to Community
Connected Components Algorithms, as an important part of graph theory, is widely applied
in the field of graph analysis and graph contraction. To improve computation and analytical
ability for graph in pgRouting, I choose to implement the algorithms in the BGL for
pgRouting, and then, time permitting, implement more applications. Furthermore, Connected
Components Algorithms can be used combining with other route planning algorithms to
figure out problems (like following application 3) with greater efficiency. Consequently, all of
these are going to help further development and applications in pgRouting.

Some possible applications:

1.​ Suppose you have a huge graph and you want to find how one vertex is related to
another. Using connected components algorithms can solve it in linear time
complexity.

2.​ 2-satisfiability problem. Boolean satisfiability determines whether we can give values
(True or False only) to each boolean variable leading the value of the formula
become True or not. If we can do so, we call formula is satisfiable, otherwise we call
it unsatisfiable. 2-satisfiability is a special case of boolean satisfiability. Read more.
Sample problem.

1 2-satisfiability - Wikipedia.

2

mailto:xjtumg1007@gmail.com
https://github.com/xjtumg
http://www.xjtumg.me
https://twitter.com/XJTUmg
http://codeforces.com/blog/entry/16205
https://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=1260
https://en.wikipedia.org/wiki/2-satisfiability

3.​ If you travel from city-to-city and you want some conditions (prices, weather, etc.) to
hold true while picking airports, connected components algorithms could help you.

4.​ Finding bridges in undirected graph. A bridge is an edge of the given graph whose 2

deletion increases its number of connected components. Tarjan’s algorithm based on
DFS can solve it in linear time complexity. 3

5. Deliverables
The deliverables would be:

1.​ Implementation of connected components algorithm for pgRouting by the BGL.
2.​ Implementation of strongly connected components algorithm for pgRouting by the

BGL.
3.​ Implementation of biconnected components algorithm for pgRouting by the BGL.
4.​ Documentation and tests for the above-mentioned components.

6. Related Work
GraphStream,
igraph,
GSoC 2016: Flow Algorithms (Implemented flow algorithms for pgRouting by the BGL),
the Boost Graph Library 1.46.0.

7. Biographical Information
I am second year Information and Computational Science undergraduate from Xi’an
Jiaotong University (XJTU) in Xi’an, Shaanxi, China. Algorithms and coding are my strengths
and future direction. I am looking forward to pursue a career in the field of algorithms. I have
much interest in open source development as it gets closest to what users want and it make
developers free to create or improve programs which contribute to the real world.
I started writing code and delving into algorithms when I was in middle school. I am familiar
with most of the algorithms in the BGL because of my abundant algorithm competition
experience. I have not written any software or libraries, though I have received several
acknowledgements in algorithm competitions. I want to challenge myself in the open source
world and make more and more contributions. So I asked pgRouting team for help. Their
feedback and guidance helped me a lot, and then I made my first contribution to pgRouting. I
do know it is easier than what I propose to do in the next months, but I am convinced this is
a good start, and I will look forward to finishing my GSoC smoothly.

8. Timeline
Community Bonding Period (May 4 to May 29, 2017):

1.​ Read the BGL docs.
2.​ Make a wiki page (TODO lists and weekly reports).

3 Tarjan R. Depth-first search and linear graph algorithms[J]. SIAM journal on computing, 1972, 1(2): 146-160.
2 Bridge (graph theory) - Wikipedia.

3

http://graphstream-project.org/
http://igraph.org/redirect.html
https://github.com/pgRouting/pgrouting/wiki/GSoC-2016-Flow
http://www.boost.org/doc/libs/1_46_0/libs/graph/doc/
https://github.com/pgRouting/pgrouting/pulls?q=is%3Apr+author%3AXJTUmg
https://en.wikipedia.org/wiki/Bridge_(graph_theory)

3.​ Develop a better understanding of postGIS, postgreSQL and PL/pgsql. Get familiar
with postgreSQL procedural language.

4.​ Learn PgTAP for automated tests.
5.​ Get familiar with pgRouting architecture.
6.​ Review C++ videos and write a report.

Official Coding Period (May 30 to August 21, 2017):
​ Official Coding Period Phase 1 (May 30 to June 26, 2017):
​ ​ Week 1 (May 30 to June 5, 2017):

1.​ Learn how to create documentation and tests.
2.​ Create initial documentation.
3.​ Analyze whether the current sample data is good for testing and

documenting the functions. If not, create new sample data for these
functions.

Week 2 to 3 (June 6 to June 19, 2017):
1.​ Learn how to implement functions for pgRouting by the BGL. Go

through related work for a better understanding and skill on the
implementation.

​ ​ Week 4 (June 20 to June 26, 2017):
1.​ Prepare basic code and test framework for the upcoming

implementations.
​ First evaluation period (June 26 to June 30, 2017):

1.​ Mentors evaluate me and I evaluate mentors of officail coding period
phase 1.

2.​ Deliver initial documentation, basic code and test framework for the
upcoming implementations.

3.​ This phase of learning would help a lot to the implementations.
​ Official Coding Period Phase 2 (June 27 to July 24, 2017):

Week 5 to 6 (June 27 to July 10, 2017):
1.​ Implement pgr_connectedComponents() function.
2.​ Create documentation for the first implementation.
3.​ Create tests for the first implementation.

Week 7 to 8 (July 11 to July 24, 2017):
1.​ Implement pgr_strongComponents() function.
2.​ Create documentation for the second implementation.
3.​ Create tests for the second implementation.

​ Second evaluation period (July 24 to July 28, 2017):
1.​ Mentors evaluate me and I evaluate mentors of officail coding period

phase 2.
2.​ Deliver the first and the second implementation as above-mentioned.

Official Coding Period Phase 3 (July 25 to August 21, 2017):
Week 9 to 10 (July 25 to August 7, 2017):

1.​ Implement pgr_biconnectedComponents() function.
2.​ Create documentation for the third implementation.
3.​ Create tests for the third implementation.

Week 11 to 12 (August 8 to August 21, 2017):

4

1.​ Fix bugs and documentation details.
2.​ Prepare for final delivery.

​ Final evaluation period (August 21 to August 29, 2017):
1.​ Wrap up my projects and submit final evaluation of my mentors.

Weekly reports:
I will post a report to the soc@osgeo and the developer mailing list of my project weekly. And
that at least answers the following questions:

1.​ What did you get done this week?
2.​ What do you plan on doing next week?
3.​ Are you blocked on anything?

Do you understand this is a serious commitment, equivalent to a full-time paid
summer internship or summer job?
Yes, I completely understand. I am fully prepared for the work and will spend at least 40
hours a week. I have tremendous passion and power to learn and develop. Also, I believe, I
am a self-motivated person as you need. If time permits, I would try to make at least one
application that makes use of a connected component function. And I would love to keep
contributing to pgRouting after this GSoC period.

Do you have any known time conflicts during the official coding period?
I do not have any conflict during the official coding period.

9. Studies

What is your school and degree?
School: Xi’an Jiaotong University(XJTU) in China.
Degree: Second year undergraduate in Information and Computational Science.

Would your application contribute to your ongoing studies/degree? If so, how?
Definitely yes! I have been enjoying coding and delving into algorithms since I was in middle
school. For the study of algorithms, I received several acknowledgements in algorithm
competitions, but I really want to got more breakthroughs on my computer skills. I am
convinced the experience of GSoC in pgRouting which contains planning, developing,
coding and writing documentation and tests will contribute much to my studies.

10. Programming and GIS

Computing experience
Operating systems:
Ubuntu 16.04.2 LTS, OSX 10.12, Windows 10.
Languages:
C, C++, Pascal, Python, Java, Perl, Bash.

5

Programming Contest:
Silver Medal, 59th, National Olympiad in Informatics(NOI China), 2013 Jul.
Gold Medal, 17th, ACM International Collegiate Programming Contest(ACM-ICPC)
China-Final, 2016 Dec.

GIS experience:
I use various GIS related softwares and libraries like pgRouting, QGIS, osm2pgrouting.

GIS and pgRouting programming:
I have fixed all warnings in pgrouting/src/trsp/src/GraphDefinition.cpp, and I
submit two pull requests as a part of 2.4 release.

11. GSoC participation
I have not participated to GSoC before and I didn’t submit a proposal to any other
organization.

12. Proposal: Connected Components Algorithms

Introduction

Connected components algorithms are important parts of graph algorithms. For this
proposal, I am aiming to implement connected components algorithms for pgRouting by the
BGL. For details,

1.​ Connected components : The connected_components() functions in the BGL 4

compute the connected components of an undirected graph. A connected
components of an undirected graph is a set of vertices that all reachable from each
other. The time complexity for the connected components algorithm using
DFS-based approach is O(V + E).

2.​ Strongly connected components : The strong_components() functions in the 5

BGL compute the strongly connected components of a directed graph. Finding
strongly connected components is used to solve 2-satisfiability (2-SAT) problems.
The time complexity for the strongly components algorithm using Tarjan’s algorithm
based on DFS is O(V + E).

3.​ Biconnected components : The biconnected_components() functions in the 6

BGL compute the biconnected components of an undirected graph. The biconnected
components of a graph are the maximal subsets of vertices such that removal of a
vertex from a particular component will not disconnect the component. The time
complexity for the biconnected components algorithm using Tarjan’s algorithm based
on DFS is also O(V + E).

6 the Boost Graph Library: Biconnected Components - 1.46.0.

5 the Boost Graph Library: Strongly Connected Components - 1.46.0.

4 the Boost Graph Library: Connected Components - 1.46.0.

6

http://history.ccf.org.cn/resources/1190201776262/noi/CCFNOI2013huojiangmingdan2013-07-25-05_01_17.htm
https://icpc.baylor.edu/regionals/finder/asia-china-final-2016/standings
https://github.com/pgRouting/pgrouting/pulls?q=is%3Apr+is%3Aclosed+author%3AXJTUmg
http://www.boost.org/doc/libs/1_46_0/libs/graph/doc/biconnected_components.html
http://www.boost.org/doc/libs/1_46_0/libs/graph/doc/strong_components.html
http://www.boost.org/doc/libs/1_46_0/libs/graph/doc/connected_components.html

Versions

Ubuntu 16.04.2 LTS
gcc/g++ (Ubuntu/Linaro 4.6.4-6ubuntu2) 4.6.4
cmake 3.5.1
Boost 1.46.0
pgRouting 2.4.0
PostgreSQL 9.5.6
PostGIS 2.2.1

Attention

To give an idea of the proposed functionality, the following code and examples does not
necessarily reflect the final signatures or the final results column names.
Following C++ code are stored in my github repository.

Description of the edges_sql query for the following proposed functions 7

edges_sql: an SQL query, which should return a set of rows with the following columns:

Column Type Default Description

id ANY-INTEGER Identifier of the edge.

source ANY-INTEGER Identifier of the first end point vertex of
the edge.

target ANY-INTEGER Identifier of the second end point vertex
of the edge.

cost ANY-NUMERICAL Weight of the edge (source, target)
●​ When negative: edge (source,

target) does not exist, therefore
it’s not part of the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),
●​ When negative: edge (target,

source) does not exist, therefore
it’s not part of the graph.

Where:
ANY-INTEGER: SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL: SMALLINT, INTEGER, BIGINT, REAL, FLOAT

7 similiar to description of the edges_sql query for dijkstra like functions
http://docs.pgrouting.org/2.4/en/pgRouting-concepts.html#description-of-the-edges-sql-query-for-dijkstra-like-func
tions

7

https://github.com/XJTUmg/ExampleCode
http://docs.pgrouting.org/2.4/en/pgRouting-concepts.html#description-of-the-edges-sql-query-for-dijkstra-like-functions
http://docs.pgrouting.org/2.4/en/pgRouting-concepts.html#description-of-the-edges-sql-query-for-dijkstra-like-functions

Connected components

Example

Figure 1: example of connected components.

Demo slides
https://docs.google.com/presentation/d/1MVKQR8DkmqhwaP57WSFStvU_kGuYzVUUcJPr
hPjNRqg/present#slide=id.g1ee22e81a9_0_58

Use the BGL
Code
https://github.com/XJTUmg/ExampleCode/blob/master/ConnectedComponents/ConnectedC
omponents.cpp
Output

Total number of components: 3​
Vertex 0 is in component 0​
Vertex 1 is in component 0​
Vertex 2 is in component 1​
Vertex 3 is in component 2​
Vertex 4 is in component 0​
Vertex 5 is in component 1

Proposed function for pgRouting
Initial setup

CREATE TABLE edge_table (​
​ id BIGSERIAL,​
​ source BIGINT,​
​ target BIGINT,​
​ cost FLOAT,​

8

https://docs.google.com/presentation/d/1MVKQR8DkmqhwaP57WSFStvU_kGuYzVUUcJPrhPjNRqg/present#slide=id.g1ee22e81a9_0_58
https://docs.google.com/presentation/d/1MVKQR8DkmqhwaP57WSFStvU_kGuYzVUUcJPrhPjNRqg/present#slide=id.g1ee22e81a9_0_58
https://github.com/XJTUmg/ExampleCode/blob/master/ConnectedComponents/ConnectedComponents.cpp
https://github.com/XJTUmg/ExampleCode/blob/master/ConnectedComponents/ConnectedComponents.cpp

​ reverse_cost FLOAT​
);​
​
INSERT INTO edge_table (​
​ source, target,​
 cost, reverse_cost) VALUES​
(0, 1, 1, 1),​
(1, 4, 1, 1),​
(0, 4, 1, 1),​
(2, 5, 1, 1),​
(3, 3, 1, 1);

Procedure
I am proposing add pgr_connectedComponents() function to pgRouting.

SELECT * FROM pgr_connectedComponents (​
​ ‘SELECT id, source, target, cost, reverse_cost FROM edge_table’);

Results

 seq | node_seq | node | component ​
-----+----------+------+-----------​
 1 | 1 | 0 | 1 ​
 2 | 2 | 1 | 1 ​
 3 | 3 | 4 | 1 ​
 4 | 1 | 2 | 2 ​
 5 | 2 | 5 | 2 ​
 6 | 1 | 3 | 3 ​
(6 rows)

About pgr_labelGraph function 8

pgr_labelGraph locates and labels sub-networks within a network which are not
topologically connected. It works on undirected graph.

1.​ The functionality of pgr_connectedComponents is very similar as
pgr_labelGraph.

​ Analyze the above example using pgr_labelGraph:

CREATE TABLE edge_table (​
 id BIGSERIAL, source BIGINT, target BIGINT);​
CREATE TABLE​
INSERT INTO edge_table (source, target) VALUES ​
 (0, 1), (1, 4), (0, 4), (2, 5), (3, 3);​
INSERT 0 5​
SET client_min_messages TO WARNING;​
SET​
SELECT pgr_labelGraph(​
 ‘edge_table’, ‘id’, ‘source’, ‘target’, ‘subgraph’);​

8 pgr_labelGraph - Proposed

9

http://docs.pgrouting.org/2.4/en/pgr_labelGraph.html#pgr-labelgraph

 pgr_labelgraph ​
----------------​
 OK​
(1 row)​
SELECT subgraph, count(*) FROM edge_table group by subgraph;​
 subgraph | count​
----------+-------​
​ 1 | 3​
​ 3 | 1​
​ 2 | 1​
(3 rows)

2.​ pgr_labelGraph uses BFS-based approach, the time complexity of this function is
square level. But connected_components function in the BGL uses DFS-based
approach with linear time complexity. In a word, pgr_connectedComponents will
be much faster than pgr_labelGraph.

3.​ pgr_connectedComponents will return more columns which means provide more
information to users. For each vertex, pgr_connectedComponents will allow
users to find which component the vertex belongs.

To summarise, pgr_labelGraph can be replaced with pgr_connectedComponents.

Strongly connected components

Example

Figure 2: example of strongly connected components.

Demo slides

https://docs.google.com/presentation/d/1lbhAmmRm-a3IAZ3VahQOsA6SaH29ddOnFsoNTO
HkGcE/present#slide=id.p

Use the BGL
Code

10

https://docs.google.com/presentation/d/1lbhAmmRm-a3IAZ3VahQOsA6SaH29ddOnFsoNTOHkGcE/present#slide=id.p
https://docs.google.com/presentation/d/1lbhAmmRm-a3IAZ3VahQOsA6SaH29ddOnFsoNTOHkGcE/present#slide=id.p

https://github.com/XJTUmg/ExampleCode/blob/master/StronglyConnectedComponents/Stro
nglyConnectedComponents.cpp
Output

Total number of strongly connected components: 5​
Vertex 0 is in strongly connected component 1​
Vertex 1 is in strongly connected component 0​
Vertex 2 is in strongly connected component 0​
Vertex 3 is in strongly connected component 4​
Vertex 4 is in strongly connected component 0​
Vertex 5 is in strongly connected component 3​
Vertex 6 is in strongly connected component 2

Proposed function for pgRouting
Initial setup

CREATE TABLE edge_table (​
​ id BIGSERIAL,​
​ source BIGINT,​
​ target BIGINT,​
​ cost FLOAT,​
​ reverse_cost FLOAT​
);​
​
INSERT INTO edge_table (​
​ source, target, ​
 cost, reverse_cost) VALUES​
(0, 1, 1, -1),​
(1, 2, 1, -1),​
(0, 2, 1, -1),​
(2, 4, 1, -1),​
(1, 4, -1, 1),​
(3, 5, 1, -1),​
(5, 6, 1, -1);

Procedure
I am proposing add pgr_strongComponents() function to pgRouting.

SELECT * FROM pgr_strongComponents (​
​ ‘SELECT id, source, target, cost, reverse_cost FROM edge_table’);

Results

 seq | node_seq | node | scc ​
-----+----------+------+-----​
 1 | 1 | 1 | 1 ​
 2 | 2 | 2 | 1 ​
 3 | 3 | 4 | 1 ​
 4 | 1 | 0 | 2 ​

11

https://github.com/XJTUmg/ExampleCode/blob/master/StronglyConnectedComponents/StronglyConnectedComponents.cpp
https://github.com/XJTUmg/ExampleCode/blob/master/StronglyConnectedComponents/StronglyConnectedComponents.cpp

 5 | 1 | 6 | 3 ​
 6 | 1 | 5 | 4 ​
 7 | 1 | 3 | 5​
(7 rows)

Biconnected components

Example

Figure 3: example of biconnected components.

Demo slides
https://docs.google.com/presentation/d/1XjL5RvCXbLozcczPv6_laEmjLx6xFGi1kWQQ_q-bX
To/present?slide=id.p

Use the BGL
Unlike connected components and strongly connected components, vertices may belong to
multiple biconnected components.The better way is outputting edges instead of vertices.
Code
https://github.com/XJTUmg/ExampleCode/blob/master/BiconnectedComponents/Biconnecte
dComponents.cpp
Output

Total number of biconnected components 5​
Edge 0 -- 1 is in biconnected component 1​
Edge 1 -- 2 is in biconnected component 1​
Edge 2 -- 0 is in biconnected component 1​
Edge 2 -- 3 is in biconnected component 0​
Edge 2 -- 4 is in biconnected component 0​

12

https://docs.google.com/presentation/d/1XjL5RvCXbLozcczPv6_laEmjLx6xFGi1kWQQ_q-bXTo/present?slide=id.p
https://docs.google.com/presentation/d/1XjL5RvCXbLozcczPv6_laEmjLx6xFGi1kWQQ_q-bXTo/present?slide=id.p
https://github.com/XJTUmg/ExampleCode/blob/master/BiconnectedComponents/BiconnectedComponents.cpp
https://github.com/XJTUmg/ExampleCode/blob/master/BiconnectedComponents/BiconnectedComponents.cpp

Edge 3 -- 4 is in biconnected component 0​
Edge 5 -- 6 is in biconnected component 3​
Edge 6 -- 7 is in biconnected component 2​
Edge 8 -- 9 is in biconnected component 4​
Edge 9 -- 10 is in biconnected component 4​
Edge 8 -- 10 is in biconnected component 4

Proposed function for pgRouting
Initial setup

CREATE TABLE edge_table (​
​ id BIGSERIAL,​
​ source BIGINT,​
​ target BIGINT,​
​ cost FLOAT,​
​ reverse_cost FLOAT​
);​
​
INSERT INTO edge_table (​
​ source, target,​
 cost, reverse_cost) VALUES​
(0, 1, 1, 1),​
(1, 2, 1, 1),​
(0, 2, 1, 1),​
(2, 3, 1, 1),​
(2, 4, 1, 1),​
(3, 4, 1, 1),​
(5, 6, 1, 1),​
(6, 7, 1, 1),​
(8, 9, 1, 1),​
(9, 10, 1, 1),​
(10, 8, 1, 1);

Procedure
I am proposing add pgr_biconnectedComponents() function to pgRouting.

SELECT * FROM pgr_biconnectedComponents (​
​ ‘SELECT id, source, target, cost, reverse_cost FROM edge_table’);

Results

 seq | edge_seq | edge | edge_p1 | edge_p2 | bcc ​
-----+----------+------+---------+---------+-----​
 1 | 1 | 4 | 2 | 3 | 1​
 2 | 2 | 5 | 2 | 4 | 1​
 3 | 3 | 6 | 3 | 4 | 1​
 4 | 1 | 1 | 0 | 1 | 2​
 5 | 2 | 2 | 1 | 2 | 2​

13

 6 | 3 | 3 | 0 | 2 | 2​
 7 | 1 | 7 | 5 | 6 | 3​
 8 | 1 | 8 | 6 | 7 | 4​
 9 | 1 | 9 | 8 | 9 | 5​
 10 | 2 | 10 | 9 | 10 | 5​
 11 | 3 | 11 | 8 | 10 | 5​
(11 rows)

Analyze pgRouting Sample Data 9

Use the BGL

Connected components: Code, Output.
Strongly connected components: Code, Output.
Biconnected components: Code, Output.

Initial setup

CREATE TABLE edge_table (​
​ id BIGSERIAL,​
​ source BIGINT,​
​ target BIGINT,​
​ cost FLOAT,​
​ reverse_cost FLOAT​
);​
​
INSERT INTO edge_table (​
​ source, target,​
 cost, reverse_cost) VALUES​
(1, 2, 1, 1),​
(2, 3, -1, 1),​
(3, 4, -1, 1),​
(2, 5, 1, 1),​
(3, 6, 1, -1),​
(4, 9, 1, 1),​
(5, 6, 1, 1),​
(6, 9, 1, 1),​
(7, 8, 1, 1),​
(8, 5, 1, 1),​
(5, 10, 1, 1),​
(6, 11, 1, -1),​
(9, 12, 1, 1),​
(10, 11, 1, -1),​
(11, 12, 1, -1),​
(10, 13, 1, 1),​

9 pgRouting Sample Data.

14

https://github.com/XJTUmg/ExampleCode/blob/master/ConnectedComponents/Sampledata.cpp
https://github.com/XJTUmg/ExampleCode/blob/master/ConnectedComponents/SampledataOutput.txt
https://github.com/XJTUmg/ExampleCode/blob/master/StronglyConnectedComponents/Sampledata.cpp
https://github.com/XJTUmg/ExampleCode/blob/master/StronglyConnectedComponents/SampledataOutput.txt
https://github.com/XJTUmg/ExampleCode/blob/master/BiconnectedComponents/Sampledata.cpp
https://github.com/XJTUmg/ExampleCode/blob/master/BiconnectedComponents/SampledataOutput.txt
http://docs.pgrouting.org/2.4/en/sampledata.html

(14, 15, 1, 1),​
(16, 17, 1, 1);

Results

Connected components:
Figure 4: analyze pgRouting Sample Data using connected components algorithm.

 seq | node_seq | node | component ​
-----+----------+------+-----------​
 1 | 1 | 1 | 1 ​
 2 | 2 | 2 | 1 ​
 3 | 3 | 3 | 1 ​
 4 | 4 | 4 | 1 ​
 5 | 5 | 5 | 1 ​
 6 | 6 | 6 | 1 ​
 7 | 7 | 7 | 1​
 8 | 8 | 8 | 1​
 9 | 9 | 9 | 1​
 10 | 10 | 10 | 1​
 11 | 11 | 11 | 1​
 12 | 12 | 12 | 1​
 13 | 13 | 13 | 1​
 14 | 1 | 14 | 2​
 15 | 2 | 15 | 2​
 16 | 1 | 16 | 3​
 17 | 2 | 17 | 3​

15

(17 rows)

Strongly Connected components:
Figure 5: analyze pgRouting Sample Data using strongly connected components algorithm.

 seq | node_seq | node | scc​
-----+----------+------+-----​
 1 | 1 | 1 | 1 ​
 2 | 2 | 2 | 1 ​
 3 | 3 | 3 | 1 ​
 4 | 4 | 4 | 1 ​
 5 | 5 | 5 | 1 ​
 6 | 6 | 6 | 1 ​
 7 | 7 | 7 | 1​
 8 | 8 | 8 | 1​
 9 | 9 | 9 | 1​
 10 | 10 | 10 | 1​
 11 | 11 | 11 | 1​
 12 | 12 | 12 | 1​
 13 | 13 | 13 | 1​
 14 | 1 | 14 | 2​
 15 | 2 | 15 | 2​
 16 | 1 | 16 | 3​
 17 | 2 | 17 | 3​
(17 rows)

Biconnected components:
Figure 6: analyze pgRouting Sample Data using biconnected components algorithm.

16

 seq | edge_seq | edge | edge_p1 | edge_p2 | bcc ​
-----+----------+------+---------+---------+-----​
 1 | 1 | 9 | 7 | 8 | 1​
 2 | 1 | 10 | 8 | 5 | 2​
 3 | 1 | 16 | 10 | 13 | 3​
 4 | 1 | 2 | 2 | 3 | 4​
 5 | 2 | 3 | 3 | 4 | 4​
 6 | 3 | 4 | 2 | 5 | 4​
 7 | 4 | 5 | 3 | 6 | 4​
 8 | 5 | 6 | 4 | 9 | 4​
 9 | 6 | 7 | 5 | 6 | 4​
 10 | 7 | 8 | 6 | 9 | 4​
 11 | 8 | 11 | 5 | 10 | 4​
 12 | 9 | 12 | 6 | 11 | 4​
 13 | 10 | 13 | 9 | 12 | 4​
 14 | 11 | 14 | 10 | 11 | 4​
 15 | 12 | 15 | 11 | 12 | 4​
 16 | 1 | 1 | 1 | 2 | 5​
 17 | 1 | 17 | 14 | 15 | 6​
 18 | 1 | 18 | 16 | 17 | 7​
(18 rows)

13. Future Directions
Some functions which can be implemented for the future, see below:

1.​ Implement articulation points function for pgRouting by the BGL.
2.​ Implement disjoint-sets data structure and incremental connected components for

pgRouting by the BGL.

17

3.​ Add a functionality to pgRouting for 2-SAT problem.
4.​ Add a functionality to pgRouting for finding bridges in an undirected graph.

For details:

1.​ Articulation points : The articulation_points() functions in the BGL 10

compute the articulation points of an undirected graph. Those vertices that belong to
more than one biconnected components are called articulation points. The time
complexity for the articulation points algorithm using Tarjan’s algorithm based on DFS
is also O(V + E).

2.​ Incremental connected components : Unlike connected_components(), in 11

this situation, the graph is growing (edges are being added) and the connected
components information needs to be updated repeatedly. The algorithm used here is
based on the disjoint-sets (fast union-find) data structure. The objects used here 12

are a graph g, a disjoint-sets structure ds, and vertices u and v.
a.​ The initialize_incremental_components(g, ds) function in the

BGL does the basic initialization of the disjoint-sets structure.
b.​ The incremental_components(g, ds) function in the BGL calculates

the connected components in the graph g and the information is embedded in
ds.

c.​ The ds.find_set(v) function in the Boost extracts the component
information for vertex v from the disjoint-sets.

d.​ The ds.union_set(u, v) function in the Boost updates the disjoint-sets
structure when edge (u, v) is added to the graph.

The time complexity for the whole process is O(V + E alpha(E, V)).
3.​ 2-satisfiability problem: We can solve 2-satisfiability instances in linear time 13

based on the notion of strongly connected components.
a.​ Construct the graph of the instance, and find its strongly connected

components.
b.​ If any strongly connected components contains both a variable and its

negation, then the instance is not satisfiable.
c.​ Contract the strongly connected components, and then the condensation is

automatically a directed acyclic graph.
d.​ Topologically order the vertices of the condensation.
e.​ Produce the results.

4.​ Bridges in an undirected graph: The algorithm is similar to linear algorithm for 14

articulation points. The time complexity for the algorithm is O(V + E).

14 Finding bridges in a graph in O(N+M) - E-maxx Algorithms - MAXimal.

13 Aspvall B, Plass M F, Tarjan R E. A linear-time algorithm for testing the truth of certain quantified boolean
formulas[J]. Information Processing Letters, 1979, 8(3): 121-123.

12 Galil Z, Italiano G F. Data structures and algorithms for disjoint set union problems[J]. ACM Computing Surveys
(CSUR), 1991, 23(3): 319-344.

11 the Boost Graph Library: Incremental Connected Components - 1.46.0.

10 the Boost Graph Library: Articulation Points - 1.46.0.

18

https://e-maxx-eng.appspot.com/graph/bridge-searching.html
http://www.boost.org/doc/libs/1_46_0/libs/graph/doc/incremental_components.html
http://www.boost.org/doc/libs/1_46_0/libs/graph/doc/biconnected_components.html#sec:articulation_points

	1. Contact Details
	2. Title
	3. Synopsis
	4. Benefits to Community
	5. Deliverables
	6. Related Work
	7. Biographical Information
	8. Timeline
	9. Studies
	What is your school and degree?
	Would your application contribute to your ongoing studies/degree? If so, how?

	10. Programming and GIS
	Computing experience
	GIS experience:
	GIS and pgRouting programming:

	11. GSoC participation
	12. Proposal: Connected Components Algorithms
	Introduction
	Versions
	Attention
	Description of the edges_sql query for the following proposed functions
	Connected components
	Example
	Demo slides
	Use the BGL
	Proposed function for pgRouting
	About pgr_labelGraph function

	Strongly connected components
	Example
	Demo slides
	Use the BGL
	Proposed function for pgRouting

	Biconnected components
	Example
	Demo slides
	Use the BGL
	Proposed function for pgRouting

	Analyze pgRouting Sample Data
	Use the BGL
	Initial setup
	Results

	13. Future Directions

