
Chromium Design Doc
JavaScript API: fetchLater

This is a public document

mych@chromium.org
Status: draft

Background
This document outlines the Chromium implementation of the fetchLater API, a JavaScript
function to request a deferred fetch request. The deferred request is queued by the browser,
and will be invoked in one of the following scenarios:

●​ The document is destroyed.
●​ The document is bfcached and not restored after a certain time.

The API is the spiritual successor of the experimental PendingBeacon API, but focuses only on
the “deferred” intrinsics of beacon requests, and is defined as part of the existing Fetch spec.

See the explainer for API overview, and the spec (draft) for detailed behaviors. Add comments
to the pull request to discuss any questions about the API.

Overview
The implementation for the JavaScript fetchLater API will be split over two main processes:

Renderer Process
●​ Provides the JavaScript API for web developers to schedule deferred fetch requests. A

deferred fetch request can be configured or aborted similarly to a fetch request. The
response of such a request will be dropped.

●​ The API is backed with the same FetchManager used by fetch API, which queues
deferred requests, performs per-origin quota validation, and sends requests upon
context destruction or upon reaching activateAfter.

●​ FetchLaterResult tells the sent state of a deferred request by looking into
FetchManager.

Browser Process
●​ Keep deferred requests alive until they are sent, even after the render is gone.
●​ Handle redirects in browsers.
●​ Drops all responses.

https://docs.google.com/document/d/1QIFUu6Ne8x0W62RKJSoTtZjSd_bIM2yXZSELxdeuTFo/edit#heading=h.967r92z7a15f
https://github.com/WICG/pending-beacon/blob/main/docs/fetch-later-api.md
https://whatpr.org/fetch/1647/094ea69...152d725.html#fetch-later-method
https://github.com/whatwg/fetch/pull/1647

Design Proposal
There are two options to implement the fetchLater API:

Option 1: Reuse PendingBeacon Implementation

The experimental PendingBeacon API is a limited version of the fetch API that only supports
HTTP GET and POST requests without custom headers and any other RequestInit fields.
Hence, its implementation does not take advantage of any of the fetch API's infrastructure, and
instead relies on a per-Document PendingBeaconDispatcher in the renderer to serialize every
PendingBeacon's URL and request body, and passes them to a per-Document
PendingBeaconHost object in the browser. The request is eventually handled by a
SimpleURLLoader which has the same lifetime as a PendingBeaconHost. However, its
capability is pretty limited in that it only supports "simple" requests.

To implement fetchLater, the RequestInit and relevant behaviors need to be supported, and the
full fetch algorithm has to be run, which are both currently backed by the complex logic under
blink/renderer/core/fetch that processes fetch requests and communicates with network service
directly. The PendingBeaconDispatcher is useless here.

To make deferred requests survive a destroyed renderer, there must be some counterpart in the
browser process to hold the request mojo. However, PendingBeaconHost is not designed to act
as a middleman between the renderer and network service. Refactoring it to do so will take
more effort than choosing Option 2.

Option 2: Reuse KeepAliveURLLoaderService (Selected)

The project introduces an in-browser Fetch 'keepalive' Infra Migration
KeepAliveURLLoaderService, which acts as a middleman between the renderer process and
network service. For every fetch keepalive request, it goes through the service, and a
KeepAliveURLLoader is created in the browser to hold the mojo pipes that connect the renderer
and the network service. When KeepAliveURLLoader is disconnected from the renderer, i.e. the
renderer is gone, it will take over the rest responsibility to ensure that the request and its
redirects are properly handled.

A fetchLater(..) request behavior is similar to a fetch(..., {keepalive: true})’s. The main difference
is that the former is only “sent” at the last possible moment by default, while the latter can be a
normal fetch() request if not fired at the end of a Document. Given the fact, it means that the
browser-side part of the keepalive infrastructure can be reused. Only new JavaScript wrapper
and renderer-side logic for fetchLater() needs to be implemented. Furthermore, the activateAfter
behavior can be solely implemented at the renderer side.

https://docs.google.com/document/d/1ZzxMMBvpqn8VZBZKnb7Go8TWjnrGcXuLS_USwVVRUvY/edit#heading=h.x7x1n8gi35r0
https://whatpr.org/fetch/1647/094ea69...152d725.html#requestinit
https://docs.google.com/document/d/1QIFUu6Ne8x0W62RKJSoTtZjSd_bIM2yXZSELxdeuTFo/edit
https://source.chromium.org/chromium/chromium/src/+/main:content/browser/renderer_host/pending_beacon_host.h;l=69;drc=54f2184c5bf221c0efaabdbe549f938066aab00f
https://source.chromium.org/chromium/chromium/src/+/refs/heads/main:services/network/public/cpp/simple_url_loader.cc;l=1375-1378;drc=54f2184c5bf221c0efaabdbe549f938066aab00f
https://whatpr.org/fetch/1647/094ea69...152d725.html#concept-fetch

C/C++‎

Detailed Design

Diagram: Flow of Process Hop for a fetchLater Request

Only the components in the red box are modified by this design. The rest are from

. Fetch 'keepalive' Infra Migration

IDL & Wrapper

A new V8 wrapper method, fetchLater(), under class GlobalFetch is defined for the new API, to
utilize the existing ScopedFetcher implementation that associates a fetch to the right context,
e.g. window, and stores total fetch counts. The main differences are that

●​ fetchLater returns a FetchLaterResult object instead of a ScriptPromise. Accessing the
`activated` field of the object should tell if the deferred fetch has been scheduled by the
browser to send.

●​ fetchLater takes a DeferredRequestInit, which provides an optional `activateAfter` field to
accelerate request sending after calling the API. The field should be validated in a new
class DeferredRequest which subclasses Request to take care of the fetchLater steps
(1) ~ (6), including enforcing the keepalive field to true.

[ImplementedAs=GlobalFetch] partial interface Window {
 [CallWith=ScriptState, NewObject, RaisesException] FetchLaterResult fetchLater(
 RequestInfo input, optional DeferredRequestInit init = {});
};
dictionary DeferredRequestInit : RequestInit { DOMHighResTimeStamp activateAfter; };
interface FetchLaterResult { readonly attribute boolean activated; };

class GlobalFetch {
 static FetchLaterResult fetchLater(ScriptState* state, LocalDOMWindow&, const V8RequestInfo* input,

https://docs.google.com/document/d/1ZzxMMBvpqn8VZBZKnb7Go8TWjnrGcXuLS_USwVVRUvY/edit#heading=h.t2xtvo1hs4gd
https://source.chromium.org/chromium/chromium/src/+/refs/heads/main:third_party/blink/renderer/core/fetch/global_fetch.h;l=22;drc=047c7dc4ee1ce908d7fea38ca063fa2f80f92c77
https://source.chromium.org/chromium/chromium/src/+/refs/heads/main:third_party/blink/renderer/core/fetch/request.h;l=30;drc=54f2184c5bf221c0efaabdbe549f938066aab00f
https://whatpr.org/fetch/1647/094ea69...152d725.html#fetch-later-method
https://whatpr.org/fetch/1647/094ea69...152d725.html#fetch-later-method

 const DeferredRequestInit* init, ExceptionState& e) {
 return ScopedFetcher::From(window)->FetchLater(state, input, init, e);
 }
};

class GlobalFetchImpl : public ScopedFetcher {
 static FetchLaterResult FetchLater(...) {
 DeferredRequest* r = DeferredRequest::Create(state, input, init, e);
 if (e.HadException() return FetchLaterResult();

 auto result = fetch_manager_->FetchLater(state, r->PassRequestData(state), r->signal(), e);
 if (e.HadException()) return FetchLaterResult();
 return result;
 }
};

FetchLaterManager

Every call to FetchManager::Fetch() adds a new FetchManager::Loader object to
FetchManager. The Loader implements ThreadableLoaderClient and holds an instance of
ThreadableLoader, which is responsible for performing different types of fetch requests, e.g. http
fetch or data fetch. At the end of the call, it triggers FetchManager::Loader::Start(), which in
return triggers ThreadableLoader::Start() and ResourceFetcher::RequestResource(). The
fetching is then kicked off in ResourceFetcher::StartLoad() after a series of ResourceRequest
validation.

After some discussions with code owners of
ThreadableLoader/ResourceFetcher/ResourceLoader, it appears that FetchLater requests are
not welcomed to reuse those logic, as most of the request/response handling will not happen
there.

Therefore, a new FetchLaterManager should be created. And a new method
FetchLaterManager::FetchLater() is defined to support the deferred fetching behavior. Unlike
FetchManager::Fetch(), calling FetchLater() only creates a subtype of FetchManager::Loader
object, FetchMnager::DeferredLoader.

DeferredLoader should perform the Deferred fetching algorithm to prepare a request for the
loader, including validating the total deferred bytes for every origin. The loader will not be started
immediately, as specified it must “wait until the last possible time”, i.e. when
ExecutionContext is destroyed, or after “activateAfter” time, to notify the browser to start. In
implementation, it calls an IPC FetchLaterLoader::SendNow(), which will notify the intermediate
loader in the browser to start sending the request.

https://source.chromium.org/chromium/chromium/src/+/refs/heads/main:third_party/blink/renderer/core/fetch/fetch_manager.h;l=28;drc=047c7dc4ee1ce908d7fea38ca063fa2f80f92c77
https://source.chromium.org/chromium/chromium/src/+/refs/heads/main:third_party/blink/renderer/core/loader/threadable_loader.cc;l=116;drc=54f2184c5bf221c0efaabdbe549f938066aab00f
https://whatpr.org/fetch/1647/094ea69...152d725.html#request-a-deferred-fetch

C/C++‎

NOTE: FetchManager::Loader() ctor takes a ScriptPromiseResolver, which does not exist in
fetchLater() call. Hence, some of the Loader’s logic needs to be updated to not rely on it.

class FetchLaterManager {
 FetchLaterResult FetchLater(...) {
 if (request_size_in_bytes > 64kB ||
 deferred_bytes_for_origin_[request.origin()] + request_size_in_bytes > 64kB) {
 e.QuotaExceededError("The provided request body exceeds the maximum supported size for the
origin");
 return FetchLaterResult();
 }
 deferred_bytes_for_origin_[request.origin()] += request_size_in_bytes;
 auto* deferred_loader =
 MakeGarbageCollected<Loader>(GetExecutionContext(), this, /*resolver=*/nullptr,
 request, &state->World(), signal);
 deferred_loader->Start();
 deferred_loaders_.insert(deferred_loader);
 return FetchLaterResult(this);
 }

 void ContextDestroyed() {
 for (auto& deferred_loader : deferred_loaders_) {
 deferred_loader->Dispose();
 // Update FetchLaterResult
 }​
 }

 void ContextEnteredBackForwardCache() {
 // Optional: the loaders may choose to optimize to start in batch.
 for (auto& deferred_loader : deferred_loaders_)
 // Notify browser to start the deferred request.
 }

 private:
 HeapHashSet<Member<Loader>> deferred_loaders_;
 HeapHashMap<Origin, uint64_t> deferred_bytes_for_origin_;
};

TODO: As DeferredLoader inherits from FetchManager::Loader, it’s worth noting that
FetchManager::Loader::Dispose() detaches its threadable_loader_ for a keepalive request,
which is not necessary after keepalive migration

TODO: FetchManager::Loader::Abort() cancels threadable_loader_, which will not stop the
browser from sending the deferred request out.

FetchLaterResult

FetchLaterResult reflects whether a deferred request, i.e. a FetchManager::DeferredLoader(),
has started to send or not.

C/C++‎
class FetchLaterResult {
 bool sent() { return loader_.invokeState() == InvokeState.SENT; }
 private:
 Member<FetchManager::DeferredLoader> deferred_loader_;
};

class FetchManager::DeferredLoader {
 // See deferred fetch record's invoke state.
 enum InvokeState {
 DEFERRED = 0;
 SCHEDULED = 1;
 TERMINATED = 2;
 ABORTED = 3;
 SENT = 4;
 }
 private:
 InvokeState invoke_state_;
};

From FetchManager to ResourceLoader

As a fetchLater() call supports an extension to the same arguments as fetch() call, its arguments
like a Request or a RequestInit should be applied with the same logic as fetch()’s.

Most of the initial fetch algorithms are implemented when running FetchManager::Loader, which
the proposed design will also run via its subclass FetchManager::DeferredLoader. However,
beyond this point, there are still many checks & potential mutations to the request before the
request is actually started to load (see below). Given its current shape, it is dangerous to make
assumptions and extract certain logic out of the entire call sequence. Not to mention duplicating
them.

A fetch blink::ResourceRequest, after created by FetchManager::Loader, gets through the
following call sequence, where each of them may perform checks or update the request:

1.​ ThreadableLoader::Start():
a.​ Verify request.GetMode()
b.​ Security check: IsNoCorsAllowedContext()
c.​ Verify request.CorsPreflightPolicy() ||

cors::IsCorsEnabledRequestMode(request.GetMode())
d.​ probe::ShouldBypassServiceWorker()

2.​ ResourceFetcher::RequestResource(): a huge section
a.​ Constructing a new copy of ResourceRequest, seems to be used to obtain

top_frame_origin for the original Resource.
b.​ Call PrepareRequest(), and return ResourceForBlockedRequest()
c.​ [not relevant] CreateResourceForStaticData() for data url or archive

https://whatpr.org/fetch/1647/094ea69...152d725.html#deferred-fetch-record-invoke-state
https://source.chromium.org/chromium/chromium/src/+/main:third_party/blink/renderer/core/loader/threadable_loader.cc;l=116;drc=8f5c47fd8d80208c191fe575f0817b26a9093837
https://source.chromium.org/chromium/chromium/src/+/main:third_party/blink/renderer/platform/loader/fetch/resource_fetcher.cc;l=1247;drc=150d8c7e45daeef094be8ec8852e3486eed8f59d

d.​ [not relevant] preload
e.​ [not relevant?] UpdateMemoryCacheStats() and check RevalidationPolicy
f.​ [not relevant?] Increase the priority of an existing request if the new request is of

a higher priority.
g.​ [?] DCHECK(EqualIgnoringFragmentIdentifier(resource->Url(), params.Url()))
h.​ [not relevant?] MaybeSaveResourceToStrongReference(resource)
i.​ [not relevant] ImageLoadBlockingPolicy-related
j.​ Call ResourceNeedsLoad()
k.​ Several Blink.Fetch histogram logging.
l.​ Call StartLoad()

3.​ ResourceFetcher::PrepareRequest()
a.​ Determine ResourceLoaderOptions
b.​ [not relevant] AttachWebBundleTokenIfNeeded()
c.​ Overwrite content type: params.OverrideContentType(factory.ContentType())
d.​ Security Check: Context.CehckCSPForRequest()
e.​ May modify URL: Context().PopulateResourceRequest()
f.​ [not relevant] Compute ResourceLoadPriority
g.​ ResourceRequest’s many fields may be changed: SetPriority,

SetRendererBlockingBheavior, SetCacheMode, SetRequestContext,
RequestDestination, SetHeader (prefetch/prerendering only),
SetAllowStaleResponse, SetReferrer, SetAllowStoredCredential.

h.​ Context().AddAdditionalRequestHeaders(resource_request);
i.​ Call Context().CanRequest()
j.​ Call Context().PrepareRequest()

4.​ BaseFetchContext::CanRequest()
a.​ Call CanRequestInternal()

i.​ Check ShouldBlockRequestByInspector(resource_request.Url())
ii.​ Add console message if checking request_mode / origin fail
iii.​ Security Check: cors::CalculateCorsFlag() for same origin
iv.​ Security Check: CheckCSPForRequestInternal()
v.​ AllowScriptFromSource()

vi.​ Security Check: ShouldBlockFetchByMixedContentCheck()
vii.​ Block deprecated URL
viii.​ Let the client have the final say into whether or not the load should

proceed.
ix.​ Warn if the resource URL's hostname contains IDNA deviation

characters.
b.​ DispatchDidBlockRequest() using probe::DidBlockRequest()

5.​ ResourceFetcher::ResourceNeedsLoad()
a.​ [not relevant] Check whether is archived
b.​ [not relevant] Call ResourceAlreadyLoadStarted()

i.​ Check RevalidationPolicy::kUse, resource->StillNeedsLoad()
6.​ ResourceFetcher::StartLoad()

https://source.chromium.org/chromium/chromium/src/+/main:third_party/blink/renderer/platform/loader/fetch/resource_fetcher.cc;l=1028;drc=150d8c7e45daeef094be8ec8852e3486eed8f59d
https://source.chromium.org/chromium/chromium/src/+/main:third_party/blink/renderer/core/loader/base_fetch_context.cc;l=86;drc=150d8c7e45daeef094be8ec8852e3486eed8f59d
https://source.chromium.org/chromium/chromium/src/+/main:third_party/blink/renderer/platform/loader/fetch/resource_fetcher.cc;l=803;drc=150d8c7e45daeef094be8ec8852e3486eed8f59d
https://source.chromium.org/chromium/chromium/src/+/main:third_party/blink/renderer/platform/loader/fetch/resource_fetcher.cc;l=2420;drc=150d8c7e45daeef094be8ec8852e3486eed8f59d

C/C++‎

a.​ Forbids JavaScript/revalidation until start() to prevent unintended state
transitions.

b.​ Check ShouldBlockLoadingSubResource() && IsMainThread()
c.​ Check total inflight_keepalive_bytes

Renderer -> Browser Communication

To support the “DeferredRequestInit.activateAfter” feature, the renderer needs a mechanism to
tell the browser to start a deferred request immediately.
Similarly, to support an abort signal, the renderer needs a way to tell the browser to drop a
deferred request. Otherwise, the browser implementation for a keepalive request will start it by
default after finding itself being disconnected from the source renderer.

Option 1: Via a new associated Renderer->Browser interface [selected]
This proposal sets up a new renderer->browser communication via a new
navigation-associated FetchLaterLoaderFactory interface, resembling URLLoaderFactory.

Without associating the factory with navigation, the unload IPC of a document may reach the
browser process earlier than the IPC to create a loader if a document is quickly terminated,
resulting in missing fetchLater requests. See also discussions in this thread.

New Mojo Interface

module blink.mojom;
interface FetchLaterLoaderFactory {
 CreateLoader(
 pending_receiver<FetchLaterLoader> loader,
 int32 request_id,
 uint32 options,
 network.mojom.URLRequest request,
 network.mojom.MutableNetworkTrafficAnnotationTag traffic_annotation);
};
interface FetchLaterLoader {
 SendNow();
 Cancel();
};

There will need to be a holder of the remote of FetchLaterLoaderFactory and remotes of
FetchLaterLoader. It appears that the creation of such a receiver of FetchLaterLoaderFactory
requires a RenderFrameHostImpl, which is not always accessible for child frame or new
windows. The implementation ends up following the existing pattern of other subresource loader

https://bugs.chromium.org/p/chromium/issues/detail?id=1465781#c18

C/C++‎

C/C++‎

factories, that the renderer side of the remotes of FetchLaterLoaderFactory are held in
ChildURLLoaderFactoryBundle, instead of using GetRemoteNavigationAssociatedInterfaces()
to initialize them. See this CL description for full details.

class FetchLaterManager : public Supplement<ExecutionContext> {
 static void AttachTo(ExecutionContext&, AssociatedInterfaceProvider*);
 static FetchLaterLoaderManager& From(ExecutionContext& ec);

 HeapMojoAssociatedRemote<mojom::blink::FetchLaterLoaderFactory> factory_;
 HeapHashSet<Member<Loader>> loaders_;
};

Calling from Renderer
While it’s tempting to directly implement them within FetchManager, the fact that there are
complicated checks and potential modifications to a request down from FetchManager (See
From FetchManager to ResourceLoader) prevents us from doing so.

Instead, FetchLaterLoaderManager should be called around the same point where a
non-FetchLater fetch request would start a loader.

bool ResourceFetcher::StartLoad() {
 ...
 if (request.is_fetch_later_api) {
 FetchLaterLoaderManager(ec)::CreateLoader(std::move(request));
 return;
 }
 loader = MakeGarbageCollected<ResourceLoader>(...);
}

After a long discussion, it seems that adding non-resource loading related logic into
ResourceFetcher is also not a good idea. The latest approach is to call relevant logic from
FetchLaterManager.

Where to Initialize the Navigation-Associated FetchLaterLoaderFactory
DONE:

●​ Check about:blank page
●​ Check popup window
●​ Check new child frame
●​ Check new child frame of about:blank
●​ Check new child frame of parent about:blank

https://crrev.com/c/4936910
https://source.chromium.org/chromium/chromium/src/+/main:third_party/blink/renderer/platform/loader/fetch/resource_fetcher.cc;l=2467-2469;drc=150d8c7e45daeef094be8ec8852e3486eed8f59d
https://chromium-review.googlesource.com/c/chromium/src/+/4892556/2..16/third_party/blink/renderer/platform/loader/fetch/resource_fetcher.cc#b2474

C/C++‎

C/C++‎

C/C++‎

Implementing in Browser
The existing KeepAliveURLLoaderSerivce should be updated to manage bindings to the
receiver set of FetchLaterLoaderFactory, which creates KeepAliveURLLoader as
FetchLaterLoader on request by renderer.

class KeepAliveURLLoader : public blink::mojom::FetchLaterLoader {
 public:
 void Abort() override { DeletSelf() }
};

Option 2: Via a new independent Renderer->Browser interface
Prototype CL: https://crrev.com/c/4800410 (This proposal may still have IPC sequencing
issues.)

This proposal sets up a new renderer->browser communication via a new FetchLaterClient
interface, in addition to the existing mojom::URLLoader.

interface FetchLaterClient {
 // Requests the client to send out the deferred FetchLater request immediately.
 // `fetch_later_request_id` is the ID of the deferred URLRequest the receiver
 // should act on.
 SendNow(mojo_base.mojom.UnguessableToken fetch_later_request_id);
};

module network.mojom;
struct URLRequest {
 mojo_base.mojom.UnguessableToken? fetch_later_request_id;
}

A FetchManager::DeferredLoader should set up the mojo pipe in its ctor, which is roughly after a
fetchLater() API is called. When the FetchManager is deactivated, every DeferredLoader in it
should use SendNow() with the fetch_later_request_id to tell the browser to start the deferred
request.

class FetchManager::DeferredLoader {
 DeferredLoader() {
 GetExecutionContext()->GetBrowserInterfaceBroker().GetInterface(

https://crrev.com/c/4800410

C/C++‎

C/C++‎

 remote_.BindNewPipeAndPassReceiver(...));
 }
 void Schedule() { PostDelayedTask(... [](){remote_.SendNow(fetch_later_request_id_);}) }

 const base::UnguessableToken fetch_later_request_id_;
 HeapMojoRemote<mojom::blink::FetchLaterClient> remote_;
};

One possible issue can arise from wrong mojo message ordering:
FetchLaterClient::SendNow() should only be called after
URLLoaderFactory::CreateLoaderAndStart() has reached the browser process, after when the
browser will only know which fetch_later_request_id the remote is asking for. If called before,
nothing can happen. Although this is unlikely to happen, as Schedule() will generally be called
when FetchManager enters BackFowardCache. The only way to enforce the ordering seems to
be sending a AssociatedPendingReceiver version of FetchLaterClient via Option 2.

Option 3a: Via a new field in network::mojom::URLRequest

Attempted prototype CL: https://crrev.com/c/4793104

A network::mojom::URLRequest gets passed from renderer -> browser -> network service by
URLLoaderFactory::CreateLoaderAndStart() method.

interface URLLoaderFactory {
 CreateLoaderAndStart(pending_receiver<URLLoader> loader,
 int32 request_id,
 uint32 options,
 URLRequest request,
 pending_remote<URLLoaderClient> client,
 MutableNetworkTrafficAnnotationTag traffic_annotation);
}

This option proposes to add a new FetchLaterParams into the URLRequest struct, which carries
a pending_receiver that should be used by the browser.

module network.mojom;

https://chromium.googlesource.com/chromium/src/+/main/mojo/public/cpp/bindings/README.md#associated-interfaces
https://crrev.com/c/4793104
https://source.chromium.org/chromium/chromium/src/+/main:services/network/public/mojom/url_request.mojom;l=131;drc=e235f5f3dd85405849d69b529ef04c40eaad53b8

struct URLRequest {
 FetchLaterParams? fetch_later_params;
}

struct FetchLaterParams {
 // A client for communication from the renderer to the browser process.
 pending_receiver<FetchLaterClient> fetch_later_client;
};

However, there are several issues:

1.​ network::mojom::URLRequest is typemapped to network::ResourceRequest and
typemapped from blink::ResourceRequest, and both of them are implicitly copyable.
However, a mojo::PendingReceiver cannot be copied.

2.​ Even if we manage to support the “copying” behavior of ResourceRequest by allowing
new instance to take over the ownership of the pending_receiver of fetch_later_client,
the field will still be lost before it reaches the handler (KeepAliveURLLoader) in content.
We are not sure how many clones will happen in between Renderer/Browser
communication of a CreateLoaderAndStart() call.

Option 3b: Setting up bi-directional & one-time pipes via a new field in
network::mojom::URLRequest
Attempted CL & discussions: link

https://chromium-review.googlesource.com/c/chromium/src/+/4803083?tab=comments

C/C++‎

To solve the issues in Option 3a, we propose to let FetchLaterParams hold a pending_remote of
fetch_later_client, similar to other existing usages in URLRequest. The fetch_later_client is now
copyable.

module network.mojom;

struct URLRequest {
 FetchLaterParams? fetch_later_params;
}

struct FetchLaterParams {
 // A one-time Browser->Renderer communication to set up FetchLaterHost.
 pending_remote<FetchLaterClient> fetch_later_client;
};

interface FetchLaterClient {
 // The remote in the browser uses this method to set up a Renderer->Browser
 // communication.
 //
 // Calling this will close the message pipe for the interface as well, so no
 // further calls can be made.
 SetFetchLaterHost(pending_remote<FetchLaterHost> fetch_later_host);

 // To support creating a copy of the remote of this client.
 Clone(pending_receiver<FetchLaterClient> receiver);
};

https://source.chromium.org/chromium/chromium/src/+/main:services/network/public/mojom/url_request.mojom;l=123;drc=ead845626d4ca92adc93e916b6aedfc61a5e5cdf

C/C++‎

// Renderer -> Browser communication
interface FetchLaterHost {
 // Asks to send out the deferred FetchLater request immediately.
 //
 // Calling this will close the message pipe for the interface as well, so no
 // further calls can be made.
 SendNow();
};

After receiving the pending_remote, the browser uses it to set up another Render->Browser
connection to allow a SendNow() call to happen later. The pending_remote will then be
dropped.

class KeepAliveURLLoader : public network::mojom::FetchLaterHost {
 KeepAliveURLLoader(...) {
 if (resource_request.fetch_later_params.has_value()) {
 mojo::Remote<network::mojom::FetchLaterClient> fetch_later_client{
 resource_request.fetch_later_params->CloneFetchLaterClient()};
 fetch_later_client->SetFetchLaterHost(fetch_later_host_.BindNewPipeAndPassRemote());
 // `fetch_later_client` from the request is dropped immediately after
 // setting up the Renderer->Browser connection.
 }

 void SendNow() override { Start(); fetch_later_host_.reset(); }

 mojo::Receiver<network::mojom::FetchLaterHost> fetch_later_host_{this};
};

Option 4: Via existing URLLoader/URLLoaderClient/URLLoaderFactory IPC
[not feasible]
These three existing network::mojo interfaces are all widely implemented, and get used across
renderer/browser/network. Adding a new method into any of them specifically for
Renderer->Browser communication looks infeasible.

In-Browser

C/C++‎

Once a deferred request is started by blink::ResourceFetcher, the rest of the flow will be similar
to the one described in Keep the Request Pipe Alive in the Browser Process. The main
difference is that the request should NOT be started immediately when
KeepAliveURLLoaderService::KeepAliveURLLoaderFactory::CreateLoaderAndStart() is called.

To support deferred loading behavior, KeepAliveURLLoaderService is updated to use the
`resource_request.fetch_later_request_id` field to tell whether a request should be handled by a
deferred KeepAliveURLLoader. If set, KeepAliveURLLoader is created with is_pending = true,
and it will only start the request when get notified by KeepAliveURLLoaderService when the
corresponding mojom::URLLoader is disconnected from a renderer.

class KeepAliveURLLoader {
 public:
 KeepAliveURLLoader() : is_started_(false) { ... }
 bool IsStarted() const;
 void Start() { CHECK(!is_started_); is_started_ = true; ... }
};
class KeepAliveURLLoaderService {
 void KeepAliveURLLoaderFactory::CreateLoaderAndStart(..., resource_request, ...) {
 auto loader = std::make_unique<KeepAliveURLLoader>(...);
 if (resource_request.fetch_later_request_id.has_value()) {
 loader->Start();
 }
 }
 void OnLoaderDisconnected() {
 if (loader_receivers_.current_context()->IsStarted()) {
 loader_receivers_.current_context()->Start();
 }​
 }
};

Privacy Considerations
This design has no impact on the existing fetch API. However, the following privacy
requirements have been discussed and are important to follow:

●​ Deferred requests must be sent over HTTPS(?).
●​ Deferred requests can only be sent after the page becomes inactive, i.e. bfcached, if

BackgroundSync permission is enabled. (see review feedback)

https://docs.google.com/document/d/1ZzxMMBvpqn8VZBZKnb7Go8TWjnrGcXuLS_USwVVRUvY/edit#heading=h.t2xtvo1hs4gd
https://github.com/WICG/pending-beacon/issues/30#issuecomment-1333869614

Security Considerations

Request Limit
See . Permission Policy: deferred-fetch

Mojo Interface
This design introduces two new navigation-associated mojo interfaces,
FetchLaterLoaderFactory and FetchLaterLoader, which resembles the existing
URLLoaderFactory and URLLoader but only for FetchLater request specific use.

The initial setup follows other subresource URLLoaderFactory patterns that a remote of
FetchLaterLoaderFactory is passed from Browser to Renderer via
NavigationClient::CommitNavigation(), see https://crrev.com/c/4936910. Subsequent data
flows from the lower-trust Renderer to the higher-trust Browser whenever a JS fetchLater() API
is called, which triggers FetchLaterLoaderFactory::CreateLoader(), and binds a
FetchLaterLoader.

The browser limits the usage of FetchLaterLoader::SendNow() and FetchLaterLoader::Cancel()
to single time by disconnecting itself after the first call to prevent any potential issues.

Please also refer to the Security Considerations section of the fetch keepalive migration about
how the browser process handles a keepalive request:

1.​ When a call to fetchLater(url) is made, before the request is queued by browser process,
the following checks are performed against url (in both renderer & browser):

a.​ Check Safe URL
b.​ Check Content-Security-Policy
c.​ Check Mixed Content
d.​ Check Safe Browsing

2.​ The request sending may be kicked off after some user-specified timeout, or by default
at page unload. If subsequent request handling involves in redirected URL targets:

a.​ Mixed Content will not be performed. This is not regression, it's the same for
fetch(url) requests, blocked by https://crbug.com/1500989.

b.​ Other checks from (1) will be performed in the browser process.

https://docs.google.com/document/d/1P70kdENIByy3qWabN5rUPmBVkkANNSOM_jZynLnqINY/edit?pli=1
https://crrev.com/c/4936910
https://docs.google.com/document/d/1ZzxMMBvpqn8VZBZKnb7Go8TWjnrGcXuLS_USwVVRUvY/edit#heading=h.juowukpchr3k
https://crbug.com/1500989

	Chromium Design Doc
	JavaScript API: fetchLater
	Background
	Overview
	Renderer Process
	Browser Process

	Design Proposal
	Option 1: Reuse PendingBeacon Implementation
	Option 2: Reuse KeepAliveURLLoaderService (Selected)

	Detailed Design
	IDL & Wrapper
	FetchLaterManager
	FetchLaterResult
	From FetchManager to ResourceLoader
	Renderer -> Browser Communication
	Option 1: Via a new associated Renderer->Browser interface [selected]
	New Mojo Interface
	Calling from Renderer
	Where to Initialize the Navigation-Associated FetchLaterLoaderFactory
	Implementing in Browser

	Option 2: Via a new independent Renderer->Browser interface
	Option 3a: Via a new field in network::mojom::URLRequest
	Option 3b: Setting up bi-directional & one-time pipes via a new field in network::mojom::URLRequest
	Option 4: Via existing URLLoader/URLLoaderClient/URLLoaderFactory IPC [not feasible]

	In-Browser

	Privacy Considerations
	Security Considerations
	Request Limit
	Mojo Interface

