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Introduction 

Newspapers from many sources are often classified into categories – business, sports, politics, 
and so on. We were inspired by online news article recommendations and classifications and 
wanted to better understand how such a widely used feature could be modeled. In particular, 
we wanted to automate this classification process by implementing a program that classifies 
newspapers based solely on the text and article title of newspapers. There are many different 
classification models that can be applied to such a problem, so rather than choosing one 
implementation, we compared the performance of many models in order to find the best. As a 
bonus, we thought it would be helpful post-training to use this model to classify any long text 
into news article categories as well. 

Related Work and Background 

We drew our work mainly from one source which aligned closely to our goals while 
introducing several new classification models not covered in class [1]. This article is relevant 
to our project because it had a public implementation for classifying news articles into one of 
5 categories (business, tech, politics, sport, entertainment), along with preprocessing. The 
goal of this article was to find the most accurate classification model. 

Our other sources allowed us to better understand models such as Multilayer Perceptron [2], 
Natural Language Processing with Naive Bayes [3], K-means clustering [4], and general 
classification models [5] [6]. 
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Methodology 

Data 

We utilized a dataset, BBC News Train.csv [7]. It includes news articles from the BBC. The 
dataset was obtained from Kaggle and contains 3 features: 

1.​ ArticleId - An ID uniquely assigned to each record 
2.​ Text - The article header and text contained within the article 
3.​ Category - The category of the article (tech, business, sport, entertainment, politics) 

The dataset is medium-sized (3.19 MB), containing 1490 different articles. However, each of 
the article texts are fairly long, as they contain the entire article. 

ArticleId Text Category 

1833 worldcom ex-boss launches 
defence… 

business 

Figure 1: Sample training example from the BBC News Train dataset 

 
Figure 2: Visualization of data distribution 



Preprocessing 

Our data required significant preprocessing, as each entry was an unedited article of text 
containing unique capitalization, punctuation, and so on. Our preprocessing method involved 
multiple steps: 

1.​ Factorizing by category 
2.​ Removing special characters and stop words 
3.​ Lowercase 
4.​ Lemmatization 
5.​ Count vectorizer 
6.​ Train-test split 

The first step in preprocessing was to factorize the dataset by the category, which associates 
category names (tech, business, sport, entertainment, politics) with a numerical value (0, 1, 2, 
3, 4). Our next step in preprocessing was to remove special characters like (e.g. !, %, @, 
accents). We also removed stop words, which are commonly used words like “the.” To ensure 
uniformity in capitalization, we converted all words to lowercase. Finally, we lemmatized the 
words, which just groups words with similar meanings to one word (e.g. ‘rocks’ and ‘rock’ as 
one word). 

To convert the words into vectors, we apply a count vectorizer from the scikit-learn library. 
CountVectorizer obtains a matrix of token counts from the collection of text documents. 

To prepare the preprocessed data for training, we shuffled the data and applied a 70-30 
train-test split, that is, 30% of a dataset was allocated for testing. 

Model Architectures 

We implemented many different classification models: 
1.​ Logistic Regression  

a.​ Description: Logistic regression is a regression algorithm that tries to fit a 
logistic curve to the data. 

b.​ Our model: scikit-learn’s LogisticRegression 
c.​ Model parameters: 

i.​ None (utilized the default scikit-learn model) 
2.​ Decision Tree Classifier 

a.​ Description: Decision tree generates a set of rules from the model, splitting the 
data at each branch. Each leaf represents a label. 

b.​ Our model: scikit-learn’s DecisionTreeClassifier 



c.​ Model parameters: 
i.​ None (utilized the default scikit-learn model) 

3.​ Random Forest 
a.​ Description: Random forest is an ensemble-learning decision tree model that 

consists of generating multiple decision trees and finding the most common 
prediction from all the generated trees. 

b.​ Our model: scikit-learn’s RandomForestClassifier 
c.​ Model parameters: 

i.​ Number of estimators = 100 
ii.​ Criterion = Entropy 

iii.​ Random state = 0 
4.​ Support Vector Classifier 

a.​ Description: Support vector machines find hyperplanes that classify data 
points. 

b.​ Our model: scikit-learn’s SVC 
c.​ Model parameters: 

i.​ None (utilized the default scikit-learn model) 
5.​ K Nearest Neighbors (k=3 and k=7) 

a.​ Description: K nearest neighbors finds boundaries to classify the articles based 
on which labels the majority of the “neighbors” (nearby points) are classified 
as. 

b.​ Our model: scikit-learn’s KNeighborsClassifier 
c.​ Model parameters: 

i.​ Number of neighbors (k) = 3, 7 (used both 3 and 7) 
ii.​ Metric = Minkowski 

iii.​ Power parameter (for Minkowski metric) = 4 
6.​ Gaussian Naive Bayes 

a.​ Description: Gaussian Naive Bayes applies Bayes’ theorem to the data to 
predict the label by assuming independence. There is an additional 
assumption that the likelihood of features is Gaussian. 

b.​ Our model: scikit-learn’s GaussianNB,  
c.​ Model parameters: 

i.​ None (utilized the default scikit-learn model) 
7.​ Multinomial Naive Bayes 

a.​ Description: Multinomial naive bayes predicts the tag of a text, such as an email 
or a newspaper story, using Bayes’ theorem. Then, it calculates the likelihood 



of each classification for a given sample and outputs the classification with the 
greatest likelihood. 

b.​ Our model: scikit-learn’s MultinomialNB 
c.​ Model parameters: 

i.​ Alpha = 1.0 
ii.​ Fit prior = True 

8.​ Multilayer Perceptron Classifier (scikit-learn) 
a.​ Description: MLP is a fully connected artificial neural network (ANN) that is 

essentially a deep neural network with one hidden layer. 
b.​ Our model: scikit-learn’s MLPClassifier 
c.​ Model parameters: 

i.​ Solver = Adam 
ii.​ Alpha = 1e-5 

iii.​ Hidden layer sizes= (6,) 
iv.​ Random state = 1 

9.​ Sequential Neural Network (TensorFlow) 
a.​ Description: TensorFlow and Keras allow for the construction of multilayer 

perceptrons with more details than scikit-learn is able to provide. Each layer 
can be specified with many parameters. 

b.​ Our model: We implemented a neural network consisting of several dense 
layers, based on models we have encountered in class. 

i.​ Layers 
1.​ Dense(12, activation= ‘relu’) 
2.​ Dense(6, activation= ‘relu’) 
3.​ Dense(1, activation= ‘sigmoid’) 

c.​ Model parameters: 
i.​ Loss = Binary Cross Entropy 

ii.​ Optimizer = Adam 
iii.​ Batch size = 1000 
iv.​ Epochs = 25 

 ​
Metrics 

We defined success as having a classification accuracy of over 60% for each model, following a 
similar threshold in Homework 3. To actually compare models, we utilized 4 metrics: 
accuracy, precision, recall, and F1 score, focusing primarily on accuracy and F1. Accuracy is 
defined as the percentage of correctly predicted observations to the total observations. 



Precision is the ratio of correctly predicted positive observations to the total predicted 
positive observations, while recall is the ratio of correctly predicted positive observations to 
all of the actual positive observations. By combining precision and recall, we can get a 
commonly used accuracy metric known as F1 Score. The equations are listed below, where TP 
= true positive, TN = true negative, FP = false positive, and TN = false negative. 

 

 

 

 
 

Results 

All models surpassed our target accuracy of 60%, and the precision, recall, and F1 scores for 
all the models were very similar – which isn’t abnormal. In fact, all our models performed 
incredibly well, with our worst model still achieving 76.06% test accuracy. 

Our best model was Random Forest, which achieved 97.99% test accuracy and a 0.98 F1 score, 
followed by Multilayer Perceptron, achieving 97.76% test accuracy and a 0.98 F1 score. The 
Sequential Deep Neural Network we implemented from TensorFlow also performed really 
well, at 97.54% test accuracy and a 0.98 F1 score. Our worst model was Gaussian Naive Bayes, 
at 76.06% test accuracy and a 0.76 F1 score. 

As an additional bonus, once trained, our model allows us to classify any text data into the 
newspaper categories. However, this didn’t perform as well as expected, possibly because our 
models overfit or trained on too small of a dataset – BBC News specifically, rather than all 
news. For instance, we inputted an article about tesla coils and only some models corrected 
classified this as technology. 

 

 Accuracy Metrics 

Model Test Accuracy Precision Recall F1 

Logistic 97.09% 0.97 0.97 0.97 



Regression 

Decision Tree 
Classifier 

82.10% 0.82 0.82 0.82 

Random Forest 97.99% 0.98 0.98 0.98 

Support Vector 
Classifier 

96.64% 0.97 0.97 0.97 

K Nearest 
Neighbors (k=3) 

79.64% 0.80 0.80 0.80 

K Nearest 
Neighbors (k=7) 

77.63% 0.78 0.78 0.78 

Gaussian Naive 
Bayes 

76.06% 0.76 0.76 0.76 

Multinomial 
Naive Bayes 

97.09% 0.97 0.97 0.97 

Multilayer 
Perceptron 
(scikit-learn) 

97.76% 0.98 0.98 0.98 

Sequential 
Neural Network 
(TensorFlow) 

97.54% 0.98 0.98 0.98 

Figure 3: Accuracy metrics on different models 

 

Challenges 

Our greatest challenge was deciding on a topic. At the start, we had so many ideas about what 
we wanted to implement. For instance, we discussed everything from creating a Discord chat 
bot, to doing some sort of machine translation, to newspaper recommendations. It took a 
long time to finally decide on a topic where we had concrete action steps. 

Later on, when we decided to focus on news articles, we struggled to find and choose 
algorithms to accomplish our task, since there were a lot of different models that we were 
unfamiliar with. Our research led us to everything from Naive Bayes to Decision Trees. Since 
our project’s stretch goal revolved around comparing the accuracies of different models, we 



needed a way to evaluate which models can work with our task of classifying news articles, 
which led us to F1 scores. 

Furthermore, we ran into some issues with Github that resulted in lost code. Our TensorFlow 
implementation of a simple neural network was deleted due to pull and push issues. 

 

Reflection 

How do you feel your project ultimately turned out? How did you do relative to your 
base/target/stretch goals? 

●​ Despite the challenges we ran into, this was a really insightful project that taught us a 
lot about text classification and the variety of models that existed. We actually 
exceeded our base goals and reached our stretch goal, implementing far more than 
one model! We are really happy with how our project turned out. 

Did your model work out the way you expected it to?  

●​ Overall, our models performed better than expected. We were surprised that Random 
Forest performed so well, beating even our neural network, which we expected to 
perform best. That being said, they both had really good and similar accuracies. 
However, Random Forest is an ensemble decision tree model, so we expect it to be 
more powerful than Decision Tree. Perhaps decision trees work very well on a dataset 
containing lots of words. We were also surprised that K Nearest Neighbors performed 
so poorly since it worked relatively well for CIFAR and MNIST in class. Notably, KNN 
also took very long to train, more so than all the other models. It seems KNN and 
Gaussian Naive Bayes models do not work well for text classification. It’s especially 
interesting how much worse Gaussian Naive Bayes did compared with Multinomial 
Naive Bayes. 

●​ Most of our models did not generalize as well for news articles from different news 
groups. Neither did they perform that well for randomly fed text, such as “I like to play 
kickball,” which was not classified as sports news for a lot of models. It’s possible our 
model is overfit or trained on too specific of a dataset – after all, not all news groups 
utilize only 5 categories and BBC News may have specific writing styles. 

How did your approach change over time? What kind of pivots did you make, if any? Would 
you have done differently if you could do your project over again? 



●​ Initially, we planned on implementing just one model for text classification and 
reporting on it. However, we realized that would not give us much insight into text 
classification itself. This led us to pivot our stretch goals to include multiple models, to 
create a much more comprehensive project that also pushed us to consider different 
models. 

●​ If we could do our project over again, we would have decided on a specific project with 
action steps a lot sooner rather than juggle many different ideas. It would have 
allowed us to delve further into this implementation. 

What do you think you can further improve on if you had more time? 

●​ If we had more time, we would have loved to explore some other models from class, 
such as RNNs. It would be a very fun challenge to try and apply RNNs to our dataset, 
and we’re very curious how it would have performed against our other models. 

What are your biggest takeaways from this project/what did you learn 

●​ Overall, we learned a lot from this project! Coming in, we did not know anything about 
Naive Bayes, Decision Trees, or many of the other models utilized. We also learned 
about the scikit-learn library and how to use its many tools (e.g. train test split with 
shuffle). This project not only taught us about these models but also taught us how to 
apply machine learning and deep learning to general datasets! 
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