
Tower of Babel: Newspaper Classification
Allen Dufort (adufort1), Michelle Liu (mliu107), Jitpuwapat Mokkamakkul (jmokkama), Zuhal

Saljooki (zsaljook)

Devpost: https://devpost.com/software/tower-of-babel
Poster: https://tinyurl.com/4r2dd3k6
Github: https://github.com/zuhal-saljooki/TowerofBabel

Introduction

Newspapers from many sources are often classified into categories – business, sports, politics,
and so on. We were inspired by online news article recommendations and classifications and
wanted to better understand how such a widely used feature could be modeled. In particular,
we wanted to automate this classification process by implementing a program that classifies
newspapers based solely on the text and article title of newspapers. There are many different
classification models that can be applied to such a problem, so rather than choosing one
implementation, we compared the performance of many models in order to find the best. As a
bonus, we thought it would be helpful post-training to use this model to classify any long text
into news article categories as well.

Related Work and Background

We drew our work mainly from one source which aligned closely to our goals while
introducing several new classification models not covered in class [1]. This article is relevant
to our project because it had a public implementation for classifying news articles into one of
5 categories (business, tech, politics, sport, entertainment), along with preprocessing. The
goal of this article was to find the most accurate classification model.

Our other sources allowed us to better understand models such as Multilayer Perceptron [2],
Natural Language Processing with Naive Bayes [3], K-means clustering [4], and general
classification models [5] [6].

https://devpost.com/software/tower-of-babel
https://docs.google.com/presentation/d/1MJmCQWjjNdqzslt6yTo4GEiLNSFdRNMZXnXVGjAPBQk/edit#slide=id.g11e8ae40872_0_96
https://github.com/zuhal-saljooki/TowerofBabel

Methodology

Data

We utilized a dataset, BBC News Train.csv [7]. It includes news articles from the BBC. The
dataset was obtained from Kaggle and contains 3 features:

1.​ ArticleId - An ID uniquely assigned to each record
2.​ Text - The article header and text contained within the article
3.​ Category - The category of the article (tech, business, sport, entertainment, politics)

The dataset is medium-sized (3.19 MB), containing 1490 different articles. However, each of
the article texts are fairly long, as they contain the entire article.

ArticleId Text Category

1833 worldcom ex-boss launches
defence…

business

Figure 1: Sample training example from the BBC News Train dataset

Figure 2: Visualization of data distribution

Preprocessing

Our data required significant preprocessing, as each entry was an unedited article of text
containing unique capitalization, punctuation, and so on. Our preprocessing method involved
multiple steps:

1.​ Factorizing by category
2.​ Removing special characters and stop words
3.​ Lowercase
4.​ Lemmatization
5.​ Count vectorizer
6.​ Train-test split

The first step in preprocessing was to factorize the dataset by the category, which associates
category names (tech, business, sport, entertainment, politics) with a numerical value (0, 1, 2,
3, 4). Our next step in preprocessing was to remove special characters like (e.g. !, %, @,
accents). We also removed stop words, which are commonly used words like “the.” To ensure
uniformity in capitalization, we converted all words to lowercase. Finally, we lemmatized the
words, which just groups words with similar meanings to one word (e.g. ‘rocks’ and ‘rock’ as
one word).

To convert the words into vectors, we apply a count vectorizer from the scikit-learn library.
CountVectorizer obtains a matrix of token counts from the collection of text documents.

To prepare the preprocessed data for training, we shuffled the data and applied a 70-30
train-test split, that is, 30% of a dataset was allocated for testing.

Model Architectures

We implemented many different classification models:
1.​ Logistic Regression

a.​ Description: Logistic regression is a regression algorithm that tries to fit a
logistic curve to the data.

b.​ Our model: scikit-learn’s LogisticRegression
c.​ Model parameters:

i.​ None (utilized the default scikit-learn model)
2.​ Decision Tree Classifier

a.​ Description: Decision tree generates a set of rules from the model, splitting the
data at each branch. Each leaf represents a label.

b.​ Our model: scikit-learn’s DecisionTreeClassifier

c.​ Model parameters:
i.​ None (utilized the default scikit-learn model)

3.​ Random Forest
a.​ Description: Random forest is an ensemble-learning decision tree model that

consists of generating multiple decision trees and finding the most common
prediction from all the generated trees.

b.​ Our model: scikit-learn’s RandomForestClassifier
c.​ Model parameters:

i.​ Number of estimators = 100
ii.​ Criterion = Entropy

iii.​ Random state = 0
4.​ Support Vector Classifier

a.​ Description: Support vector machines find hyperplanes that classify data
points.

b.​ Our model: scikit-learn’s SVC
c.​ Model parameters:

i.​ None (utilized the default scikit-learn model)
5.​ K Nearest Neighbors (k=3 and k=7)

a.​ Description: K nearest neighbors finds boundaries to classify the articles based
on which labels the majority of the “neighbors” (nearby points) are classified
as.

b.​ Our model: scikit-learn’s KNeighborsClassifier
c.​ Model parameters:

i.​ Number of neighbors (k) = 3, 7 (used both 3 and 7)
ii.​ Metric = Minkowski

iii.​ Power parameter (for Minkowski metric) = 4
6.​ Gaussian Naive Bayes

a.​ Description: Gaussian Naive Bayes applies Bayes’ theorem to the data to
predict the label by assuming independence. There is an additional
assumption that the likelihood of features is Gaussian.

b.​ Our model: scikit-learn’s GaussianNB,
c.​ Model parameters:

i.​ None (utilized the default scikit-learn model)
7.​ Multinomial Naive Bayes

a.​ Description: Multinomial naive bayes predicts the tag of a text, such as an email
or a newspaper story, using Bayes’ theorem. Then, it calculates the likelihood

of each classification for a given sample and outputs the classification with the
greatest likelihood.

b.​ Our model: scikit-learn’s MultinomialNB
c.​ Model parameters:

i.​ Alpha = 1.0
ii.​ Fit prior = True

8.​ Multilayer Perceptron Classifier (scikit-learn)
a.​ Description: MLP is a fully connected artificial neural network (ANN) that is

essentially a deep neural network with one hidden layer.
b.​ Our model: scikit-learn’s MLPClassifier
c.​ Model parameters:

i.​ Solver = Adam
ii.​ Alpha = 1e-5

iii.​ Hidden layer sizes= (6,)
iv.​ Random state = 1

9.​ Sequential Neural Network (TensorFlow)
a.​ Description: TensorFlow and Keras allow for the construction of multilayer

perceptrons with more details than scikit-learn is able to provide. Each layer
can be specified with many parameters.

b.​ Our model: We implemented a neural network consisting of several dense
layers, based on models we have encountered in class.

i.​ Layers
1.​ Dense(12, activation= ‘relu’)
2.​ Dense(6, activation= ‘relu’)
3.​ Dense(1, activation= ‘sigmoid’)

c.​ Model parameters:
i.​ Loss = Binary Cross Entropy

ii.​ Optimizer = Adam
iii.​ Batch size = 1000
iv.​ Epochs = 25

 ​
Metrics

We defined success as having a classification accuracy of over 60% for each model, following a
similar threshold in Homework 3. To actually compare models, we utilized 4 metrics:
accuracy, precision, recall, and F1 score, focusing primarily on accuracy and F1. Accuracy is
defined as the percentage of correctly predicted observations to the total observations.

Precision is the ratio of correctly predicted positive observations to the total predicted
positive observations, while recall is the ratio of correctly predicted positive observations to
all of the actual positive observations. By combining precision and recall, we can get a
commonly used accuracy metric known as F1 Score. The equations are listed below, where TP
= true positive, TN = true negative, FP = false positive, and TN = false negative.

Results

All models surpassed our target accuracy of 60%, and the precision, recall, and F1 scores for
all the models were very similar – which isn’t abnormal. In fact, all our models performed
incredibly well, with our worst model still achieving 76.06% test accuracy.

Our best model was Random Forest, which achieved 97.99% test accuracy and a 0.98 F1 score,
followed by Multilayer Perceptron, achieving 97.76% test accuracy and a 0.98 F1 score. The
Sequential Deep Neural Network we implemented from TensorFlow also performed really
well, at 97.54% test accuracy and a 0.98 F1 score. Our worst model was Gaussian Naive Bayes,
at 76.06% test accuracy and a 0.76 F1 score.

As an additional bonus, once trained, our model allows us to classify any text data into the
newspaper categories. However, this didn’t perform as well as expected, possibly because our
models overfit or trained on too small of a dataset – BBC News specifically, rather than all
news. For instance, we inputted an article about tesla coils and only some models corrected
classified this as technology.

 Accuracy Metrics

Model Test Accuracy Precision Recall F1

Logistic 97.09% 0.97 0.97 0.97

Regression

Decision Tree
Classifier

82.10% 0.82 0.82 0.82

Random Forest 97.99% 0.98 0.98 0.98

Support Vector
Classifier

96.64% 0.97 0.97 0.97

K Nearest
Neighbors (k=3)

79.64% 0.80 0.80 0.80

K Nearest
Neighbors (k=7)

77.63% 0.78 0.78 0.78

Gaussian Naive
Bayes

76.06% 0.76 0.76 0.76

Multinomial
Naive Bayes

97.09% 0.97 0.97 0.97

Multilayer
Perceptron
(scikit-learn)

97.76% 0.98 0.98 0.98

Sequential
Neural Network
(TensorFlow)

97.54% 0.98 0.98 0.98

Figure 3: Accuracy metrics on different models

Challenges

Our greatest challenge was deciding on a topic. At the start, we had so many ideas about what
we wanted to implement. For instance, we discussed everything from creating a Discord chat
bot, to doing some sort of machine translation, to newspaper recommendations. It took a
long time to finally decide on a topic where we had concrete action steps.

Later on, when we decided to focus on news articles, we struggled to find and choose
algorithms to accomplish our task, since there were a lot of different models that we were
unfamiliar with. Our research led us to everything from Naive Bayes to Decision Trees. Since
our project’s stretch goal revolved around comparing the accuracies of different models, we

needed a way to evaluate which models can work with our task of classifying news articles,
which led us to F1 scores.

Furthermore, we ran into some issues with Github that resulted in lost code. Our TensorFlow
implementation of a simple neural network was deleted due to pull and push issues.

Reflection

How do you feel your project ultimately turned out? How did you do relative to your
base/target/stretch goals?

●​ Despite the challenges we ran into, this was a really insightful project that taught us a
lot about text classification and the variety of models that existed. We actually
exceeded our base goals and reached our stretch goal, implementing far more than
one model! We are really happy with how our project turned out.

Did your model work out the way you expected it to?

●​ Overall, our models performed better than expected. We were surprised that Random
Forest performed so well, beating even our neural network, which we expected to
perform best. That being said, they both had really good and similar accuracies.
However, Random Forest is an ensemble decision tree model, so we expect it to be
more powerful than Decision Tree. Perhaps decision trees work very well on a dataset
containing lots of words. We were also surprised that K Nearest Neighbors performed
so poorly since it worked relatively well for CIFAR and MNIST in class. Notably, KNN
also took very long to train, more so than all the other models. It seems KNN and
Gaussian Naive Bayes models do not work well for text classification. It’s especially
interesting how much worse Gaussian Naive Bayes did compared with Multinomial
Naive Bayes.

●​ Most of our models did not generalize as well for news articles from different news
groups. Neither did they perform that well for randomly fed text, such as “I like to play
kickball,” which was not classified as sports news for a lot of models. It’s possible our
model is overfit or trained on too specific of a dataset – after all, not all news groups
utilize only 5 categories and BBC News may have specific writing styles.

How did your approach change over time? What kind of pivots did you make, if any? Would
you have done differently if you could do your project over again?

●​ Initially, we planned on implementing just one model for text classification and
reporting on it. However, we realized that would not give us much insight into text
classification itself. This led us to pivot our stretch goals to include multiple models, to
create a much more comprehensive project that also pushed us to consider different
models.

●​ If we could do our project over again, we would have decided on a specific project with
action steps a lot sooner rather than juggle many different ideas. It would have
allowed us to delve further into this implementation.

What do you think you can further improve on if you had more time?

●​ If we had more time, we would have loved to explore some other models from class,
such as RNNs. It would be a very fun challenge to try and apply RNNs to our dataset,
and we’re very curious how it would have performed against our other models.

What are your biggest takeaways from this project/what did you learn

●​ Overall, we learned a lot from this project! Coming in, we did not know anything about
Naive Bayes, Decision Trees, or many of the other models utilized. We also learned
about the scikit-learn library and how to use its many tools (e.g. train test split with
shuffle). This project not only taught us about these models but also taught us how to
apply machine learning and deep learning to general datasets!

References

[1] Text Classification of News Articles

[2] MLP model

[3] NLP with Naive Bayes

[4] K-means clustering

[5] Classification Model

[6] Intro to Text Classification Model

[7] BBC News Train.csv

https://www.analyticsvidhya.com/blog/2021/12/text-classification-of-news-articles/
https://python-course.eu/machine-learning/neural-networks-with-scikit.php
https://www.kaggle.com/code/thiagohenriqueleite/pln-with-naivebayes-bagofwords/notebook
https://www.kaggle.com/code/aybukehamideak/clustering-text-documents-using-k-means
https://www.kaggle.com/code/marctorsoc/newsgroups-marc
https://marctorsoc.github.io/posts/intro-to-text-classification/
https://docs.google.com/spreadsheets/d/1fvhiqN7b6E3j697F_LzR9YpJmPTrlHPz/edit?usp=sharing&ouid=102571066663734139638&rtpof=true&sd=true

	Tower of Babel: Newspaper Classification
	Introduction
	Related Work and Background

	Methodology
	Data
	Preprocessing

	Model Architectures
	 ​Metrics
	Results
	Challenges
	Reflection
	References

