Latent Dirichlet Allocation (LDA) in the Pipelines API
Public Design Doc

Table of Contents

Document history

Development plan

Requirements for API

Design considerations
Use cases
DistributedLDAModel: Storing training data in the model

Proposed API for spark.ml
Class structure
Input data type
Avoiding recomputation
Model.transform(DataFrame) columns
Model inspection return types
Evaluation

Future

Functionality in spark.mllib

Document history

e Authors: Joseph Bradley
e October 2015: Initial draft.

Links
e Main JIRA: SPARK-5565

Development plan

e ML Sprint 6 (October)
o Getinitial Scala API into Spark
o Get Python API into Spark
e Monitor for feature requests since it is unclear what features are needed.

Changes from this doc in initial implementation

e | am eliminating the doc ID. This is not very necessary with DataFrames since users can
include a doc ID as another column if needed. The algorithm does not need to enforce
its presence.

https://issues.apache.org/jira/browse/SPARK-5565

e | am modifying the spec for topDocumentsPerTopic since documents no longer have
IDs. We can make use of DataFrame groupByKey, etc. instead.

Requirements for API

e Provide all LDA functionality which the spark.mllib API provides.
e Fit the Pipelines API, in which most outputs are provided via DataFrame columns.
e Resemble the spark.mllib APl when possible to ease the transition for users.

Design considerations
Use cases

What are the main use cases? Relatedly, how can we categorize queries?
e Feature generation
o Return datum per Row. Part of a Pipeline.
O topicDistributions, topTopicsPerDocument, topicAssignments
e Model inspection
o Return data of arbitrary shape. Not part of a Pipeline.
0 describeTopics, topicsMatrix, topDocumentsPerTopic
e FEvaluation
o Return scalar, or a scalar per Row.
0 logLikelihood, perplexity

DistributedLDAModel: Storing training data in the model

Issue:
e Certain LDA optimizers store info about the entire training dataset, and that info is hard
to reproduce later (costly, or impossible without retraining due to randomness).
e |t can be useful to access that data later for:
o Model inspection
o Making predictions on training data (without recomputing)

In spark.mllib

This is solved by providing 2 types of LDAModel subclasses, one for each optimizer:
e LocalLDAModel for Online optimizer
e DistributedLDAModel for EM optimizer

In spark.ml

Q: Can we provide similar functionality?
e Model inspection: Yes. Use a similar class hierarchy (discussed below).
e Avoiding recomputation: Maybe via caching or fitAndTransform() (discussed below).

Proposed API for spark.ml

Items to discuss:

Class structure

Input data type
Model.transform() columns
Model inspection return types
Evaluation

Class structure

Q: Should we keep a class structure?
e Pros
o Class structure reflects semantic differences between models produced by
different optimizers, which support different queries (for model inspection).
e Cons
o LDA fit() will return an abstract LDAModel, which must then be cast to the
appropriate type in order to make certain queries.

Proposal: Yes, but modify the class structure. There will be a concrete LDAModel class, which
is extended by a concrete DistributedLDAModel class. This will be less confusing to users,
while still allowing expert users to access training data info from a DistributedLDAModel.

Proposed Scala API

class LDA {
def fit(data: DataFrame): LDAModel

class LDAModel {
def logLikelihood(data: DataFrame): Double

def isDistributed: Boolean

class DistributedLDAModel extends LDAModel {
def trainingLogLikelihood(): Double

The Python API will follow the same structure. We will create a private[ml] LDAModelWrapper
to implement this API.

Basic usage

val model = lda.fit(trainingData)

val logLikelihood = model.logLikelihood (data)

// transform & evaluate will be used for advanced usage too.
val predictions = model.transform(data)
evaluator.evaluate (model, data)

Advanced usage

val model = lda.fit(trainingData)

val 11 = model match {
case m: DistributedLDAModel => model.logLikelihood
case m: LDAModel => model.logLikelihood(trainingData)

Alternatives which avoid the type issue:
e Provide multiple LDA Estimators, one for each Optimizer.
o Con: This will force non-expert users to choose an algorithm.
e Provide a single LDAModel type which throws errors when methods are called if the
Optimizer did not store the needed data.
o Con: This API would be confusing and cause runtime errors.

Alternative: Rename to provide 1 model type per Optimizer. E.g., EMLDAModel,
OnlineLDAModel, GibbsLDAModel instead of LocalLDAModel, DistributedLDAModel.
e This should not be necessary; local (no info on training data) vs. distributed (info on
training data) should be the only distinction.

Input data type

Q: What DataFrame schema should LDA take?
Proposal: We will initially accept a Vector column of word counts + a Long column of doc IDs.
This will be most similar to the spark.mllib API.

e Later on, we can add support for other input column types, such as Seq[String].

Avoiding recomputation

Issue: A DistributedLDAModel stores info about its training data which can be output as
columns in the output DataFrame (e.g., topicDistributions).

Q: How can we avoid recomputing it when the user calls transform() on the training data?
Proposal: Ignore this issue for now since it goes beyond LDA.

Q: Should we guarantee that these 2 queries return the same result?
® DistributedLDAModel.myResult
o This takes data from the stored training set.
® DistributedLDAModel.transform(trainingData) .select (“myResult”)

o This could re-run inference on the training data, returning a different result due to
randomness. (The inference process is different than during training since the
topics remain fixed.)

Proposal: No. Do not guarantee it. Do not specify anything in the doc so there is no contract.

Model.transform(DataFrame) columns

This section discusses per-document (per-Row) outputs from calling transform () on a new
DataFrame.

Proposal: Share these columns for all model types, regardless of the optimizer.
e Pro: Simpler API, eventually.
e Con: Currently, not all models will support all output columns, so we will throw errors at
runtime when the user specifies an unsupported output.

Proposal: Output topicDistribution column only by default.

Parameterized output columns: Several queries in spark.mllib include threshold parameters,
which may affect the results in output columns. These will be specified as Model Params.

Proposed output columns: The initial API will only include the first output column. We can
provide the 2nd two as methods if needed, or wait and provide them as output columns later,
depending on user feedback.

Column name spark.mllib method Schema Description
topicDistribution topicDistributions Vector length # topics
topTopics topTopicsPerDocumen | Array(length <= # topics.

Sorted &
Field(“topic”, Int) truncated to
Field(“weight”, Double) | top-weighted

) topics.

t Struct(

)

termTopicAssignm
ents

Array(
Struct(

length # terms.

Done per-term
Field(“term”, Int) because of input
Field(“topic”, Int) data being

) unordered.

topicAssignments

)

Q: Should we flatten output column schemas?
E.g.: In spark.mllib, topTopicsPerDocument returns a pair Array[Int],
Array[Double] for each document. In spark.ml, what should the output schema be?
e One column: ArrayType of StructType with fields topic: Int,
Double
e Two columns: ArrayType of Int, ArrayType of Double for topics, weights
Decision: No. Keep structured.
e We may use MapType for topicAssignments, but it depends on whether maps become
easier to work with in Spark SQL. We can delay the decision until we add it post-MVP.

weight:

Model inspection return types

Q: What return types should we use for model inspection methods?
Proposal: Local DataFrames for any non-trivial types.

E.g., for describeTopics:

topic termIndices termWeights terms

Integer Array(Integer) Array(Double) Array(String)

topic index sorted term indices sorted term weights sorted term Strings, if

available

topicsMatrix: Matrix type (not a DataFrame)

topDocumentsPerTopic: DataFrame

Evaluation

Proposal:
e Provide logLikelihood, perplexity methods returning scalar metrics for a
dataset, as in spark.mllib.

Future work (out of scope):
e Add per-Row output columns, in some cases.
o This should come later since it may require discussion to decide on the best
evaluation metrics. (There are multiple ways to calculate likelihood & perplexity.)
e We will add an Evaluator for clustering later on.
o Complication: For evaluation, it can be important to consider the penalty from the
model prior as well, so this output column may not be sufficient for an Evaluator.

Future

The main issues for the future are:
e Adding another optimizer (Gibbs sampling)
o This should fit within the DistributedLDAModel API.
e Provide per-Row evaluation metrics via new output columns
o Requires some discussion
e Providing an Evaluator for LDA model selection
o Requires design doc
e Avoiding recomputation when transforming training data
o Requires design doc

Functionality in spark.mllib

We list LDA’s current functionality as of Spark 1.5. This does not all have to be supported in
Pipelines via output columns, but some are important, as highlighted by the use cases below.

abstract class LDAModel {
// For each topic, return top-weighted terms as:
// (term indices, term weights), sorted

def describeTopics (
maxTermsPerTopic: Int): Array[(Array[Int], Array[Doublel])]

// #terms x #topics matrix

def topicsMatrix: Matrix

class LocallLDAModel {
// evaluation metric (similar API for other metrics)

def logLikelihood (documents: RDD[(Long, Vector)]): Double
// RDD over documents: (doc ID, topic distribution)
def topicDistributions (

documents: RDD[(Long, Vector)]): RDD[(Long, Vector)]

class DistributedLDAModel {
// evaluation metric which operates on dataset stored by model
def logLikelihood: Double

// For each topic, return top docs as:

// (doc ID, doc weight), sorted
def topDocumentsPerTopic (
maxDocumentsPerTopic: Int): Arrayl[(Array[Long], Array[Double])]

// For each doc, return top topics as:
// (doc ID, topic index, topic weight), with topic arrays sorted
def topTopicsPerDocument (

k: Int): RDD[(Long, Array[Int], Array[Double])]

// For each doc, return (term, topic) matching for all terms in
doc:
// (doc ID, term indices, topic indices)
def topicAssignments: RDD[(Long, Array[Int], Array[Int])]

// RDD over documents: (doc ID, topic distribution)
def topicDistributions: RDDJ[(Long, Vector)]

// not in Spark, but could be
(FUTURE) class GibbsSamplingLDAModel {
// For each doc, return current topic assigned to each token:

// (doc ID, topic indices corresponding to tokens)
// Note: A “token” is an instance of a term in a doc.
def topicAssignments: RDDJ[(Long, Array[Int])]

	Document history
	Development plan
	Changes from this doc in initial implementation

	Requirements for API
	Design considerations
	Use cases
	DistributedLDAModel: Storing training data in the model

	Proposed API for spark.ml
	Class structure
	Input data type
	Avoiding recomputation
	Model.transform(DataFrame) columns
	Model inspection return types
	Evaluation

	Future
	Functionality in spark.mllib

