
A guide to using Sonic Pi

Made by the Digital Inclusion, Skills and Creativity (DISC) team at the University of York.

Sonic Pi is a coding tool that allows you to "live code" music. Live coding means you can
be playing music and changing the code as you go, creating a seamless music
experience. You can also use Sonic Pi to learn coding and key features of coding like
loops, as it is based on the coding language Ruby.

In some ways, Sonic Pi requires a balance between coding and music, as some features
work in a way that will make sense musically and other features work in a way that will
make sense for coding, but make less sense if you're used to reading and creating music.

Throughout this guide, we will link to Sonic Pi's own tutorial for further information.

If you'd like to have a go at making things in Sonic Pi, you could also work through our
Sonic Pi exercises.

Installing Sonic Pi

Sonic Pi is available for Windows, MacOS and Raspberry Pi OS and can be downloaded
from the Sonic Pi website for free.

The Sonic Pi interface

When you open Sonic Pi, you will get a few different sections in the interface. The main
part is the code editor, which is the section on the left where you can write your Sonic Pi
code. There is also sections for the log of what Sonic Pi is doing (on the right) and a pane
that can show the tutorial or lists of examples, synths, FX, and samples (on the bottom
left). Here's what it looks like:

1

https://subjectguides.york.ac.uk/skills/about/disc
https://sonic-pi.net/
https://sonic-pi.net/tutorial.html
https://docs.google.com/document/d/1jufg83r0tc__EsoCQsL3ImPJWNxYoBgdhLB553mlgFo/edit?usp=sharing
https://sonic-pi.net/

Basically, you can write code in the code editor, and then use the run / stop buttons at the
top to control if your code plays or not. There are also other buttons along the top you can
explore.

Underneath the code editor are the buffer numbers. Basically, you can have a few
different bits of Sonic Pi code open at once and move between them by clicking on the
buffer numbers.

Sonic Pi tutorial: Exploring the interface

Notes

Notes can be represented either by a number or the note name and octave.

●​ Using numbers enables you to use calculated or even random notes
●​ Playing with named notes is easier for coding a definite tune if you are familiar with

musical terminology

Use the keyword play followed by the note you want - numbers don't need anything else,
but named notes need to start with a colon : (named notes are not case sensitive) e.g.
play 60 or play :C4

To play multiple notes, you can use play_pattern and then put the notes in square
brackets[], separated by commas (there must be a space between play_pattern and
the square brackets), e.g. play_pattern [60,75,60,41] or play_pattern [:c3,:d4:a4,:c4]

You can also do chords (combinations of notes) can be represented either by several
note names/numbers or the chord names, using play_chord

If you want to use multiple commands in a row, e.g. multiple play or play_chord
commands, you will need to use sleep to add a break between them playing, otherwise
Sonic Pi will just play notes at the same time. This is strange for music, but it makes sense

2

https://sonic-pi.net/tutorial.html#section-1-2

in coding - computers will do things immediately after one another unless you tell them
otherwise, and this can often appear to be simultaneous because it is so quick.

To use sleep, just write sleep and then a time in seconds e.g. sleep 2 or sleep 0.5

use_bpm allows you to set a tempo for a piece in ‘beats per minute’.

play_pattern_timed is like play_pattern, but allows you to specify the length of each
note afterwards in a separate set of square brackets, e.g. play_pattern_timed
[40,52,50,52],[0.3,0.4,0.4,0.5] or play_pattern_timed [:e3,:e4,:d4,:b3],
[0.3,0.4,0.4,0.5]

You can also create rests in play patterns (so, silence) using :r, :rest, or nil.

Synths

Just using the play methods, gives relatively plain sounds. To make it more interesting,
select a specific synthesiser sound before you play the notes or chords. Type use_synth
and then a space and you'll get a list of synths you can set, e.g. use_synth :prophet

You can change synths later in the code too - just use use_synth again!

Sonic Pi tutorial: Switching synths

Samples

The other way to generate a sound is to use samples, which are audio clips, and could be
music, environmental sounds, speech etc - anything that could be produced and
recorded.

To play a sample write sample and then do a space and it will suggest built in samples
you could use, e.g. sample :loop_amen

You can change parameters for the samples and there's a range of parameters you can
use. See the information on Sonic Pi tutorial: Samples for the full range, but a handy one to
know is changing the rate of a sample, which can essentially stretch or squish the
sample, making it slower and lower or faster and higher, e.g. sample :loop_amen, rate:
0.5

You can even use a rate of -1 to make it play backwards!

You can also use your own samples, but you need WAV, AIFF or FLAC files - .mp3 files don’t
work. To play a sample stored on your own device, use the sample command and then
inside double quotes "" put the file path, which will be slightly different depending on your
operating system.

Windows:

3

https://sonic-pi.net/tutorial.html#section-2-3
https://sonic-pi.net/tutorial.html#section-3

sample "C:/Users/name/folder/my-sound.wav"

Mac, Linux, Raspberry Pi:

sample "/Users/name/folder/my-sound.wav"

Comments

Like any other coding language, Sonic Pi allows you to add comments to your code.
Comments are parts of code that the computer skips, because they are designed for
humans to read, not computers. Comments can be used to add notes and reminders, or
even to stop a line of code from running whilst you work out what was wrong. In the
context of Sonic Pi, comments can be used to remove a line to see what effect that has
on the music you're playing.

To create a comment, use the hash symbol # and then anything written afterwards on
that line will not be run by the computer.

Loops

Loops are what makes Sonic Pi really powerful. As well as being able to do more
traditional kinds of loops for music or coding, like repeating a section a specified number
of times using .times, you can have a loop that runs forever, and, most importantly, a
live_loop that loops forever but also allows you to edit the loop and hit Run again for it to
change into that version of the code seamlessly. This is the feature of Sonic Pi that makes
it great for live performances, as you can change the sound of the music without
interruption.

All loops in Sonic Pi start with do and finish with end and then have code in the middle, but
what you put before do changes what kind of loop it is and how it works.

Using .times do with a number in front of the . like 2.times do or 5.times do will repeat the
code within the loop that many times, so

​​ 4.times do​
​ ​ play_pattern[60,71,59,71]​
​ end

will play that pattern of notes 4 times.

Using loop do creates a loop that will run when you hit the Run button until you press Stop.
If you press the Run button again before stopping, it will start an additional instance
playing, rather than replace it (so you can create so quite horrible sounds by accident).

Using live_loop :loopName do creates a loop that will run when you hit the Run button
until you press Stop and if you press Run again, it will continue playing the same instance,
but incorporate any changes you've made since you last pressed Run. Using a live loop is

4

crucial to Sonic Pi as it allows you to modify your code live, making it great for
performances. You have to give a live_loop a name, but that name can be anything, from
:melody to :banana

Sonic Pi tutorial: Iteration and loops

Defining functions

What if you wanted to repeat code, but not immediately? In Sonic Pi, like in most coding
languages, you can create what are called 'functions', which is a section of code that is
given a name, and then you can make that bit of code run when you write the name. It is
similar to having a verse or a chorus in music, and repeating this in difference places in
your song.

To create a function you use define :functionname do and then put the code, and then
close it with end so you'll end up with something like

define :chorus do​
​ play 78​
​ sleep 1​
​ play_pattern_timed [67,78,54,78,54],[0.4,0.3,0.4,0.4,0.3]​
​ sleep 2​
end

chorus

You have to write the name of the function in your code to make it happen, and you can
put it inside a loop if you want it to play multiple times (or have loops inside your
function).

Sonic Pi tutorial: Functions

Further coding features

There are even more features of coding that are available within Sonic Pi, like conditions
and variables. See Sonic Pi tutorial: Programming Structures for these.

5

https://sonic-pi.net/tutorial.html#section-5-2
https://sonic-pi.net/tutorial.html#section-5-5
https://sonic-pi.net/tutorial.html#section-5

Examples

Basic tune in a live loop (called ‘twinkie’) with the tempo set at 120 bpm

live_loop :twinkie do

 use_bpm 120

 play_pattern [:D4,:D4,:A4,:A4,:B4,:B4]

 play :A4

 sleep 2

 play_pattern [67,67,66,66,64,64]

 play chord(:D4, :M)

 sleep 2

 end

Use a synth for the sound

live_loop :twinkie do

 use_bpm 120

 use_synth :pluck

 play_pattern [:D4,:D4,:A4,:A4,:B4,:B4]

 play :A4

 sleep 2

 play_pattern [67,67,66,66,64,64]

 play chord(:D4, :M)

 sleep 2

 end

Same tune using timed pattern, and some effects around the sound

live_loop :twinkie do

 use_bpm 120

 use_synth :pluck

 with_fx :reverb, room: 1 do

 play_pattern_timed [:D4,:D4,:A4,:A4,:B4,:B4,:A4], [1,1,1,1,1,1,2]

 play_pattern_timed [67,67,66,66,64,64,60], [1,1,1,1,1,1,2]

6

 end

end

7

	A guide to using Sonic Pi
	Installing Sonic Pi
	The Sonic Pi interface
	Notes
	Synths
	Samples
	Comments
	Loops
	Defining functions
	Further coding features
	
	Examples

