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1. Motivation 

Currently, our ML_Predict operator or sink calls the inference API synchronously for each 
record. 

For large Kafka streams or expensive models, this leads to excessive API calls, slow 
throughput, and high cost. 

Batching significantly improves efficiency: 

●​ Batch API calls are typically ~50% cheaper than synchronous calls.​
 

●​ Posting grouped records also improves throughput and reduces API throttling risks.​
 

This FLIP proposes a batch inference mechanism in which a Flink operator: 

1.​ Collects a group of records from the source.​
 

2.​ Writes them into a temporary JSONL file.​
 

3.​ Uploads the file to the model’s Batch API.​
 

4.​ Monitors completion status.​
 

5.​ Emits the results downstream once ready.​
 

This enables efficient integration with ML batch inference APIs while preserving 
exactly-once semantics. 

 

 



2. Public Interfaces 
New Parameters in ML_Predict:​
 

Parameter Type Description 

batch Boolean Enables batch inference mode 

batch_number String Unique identifier for each batch submission 

ml.batch.api.endpoint String Endpoint for batch inference API 

ml.batch.poll.interval Duration Interval between status polls 

ml.batch.local.dir Path Local temporary directory for batch files 

​
These are managed by the Flink operator when batch=true. 

3. Proposed Changes 
New Operator: BatchInferenceOperator​
Responsibilities:​
- Buffer incoming records until a threshold is reached.​
- Write them to a temporary .jsonl file.​
- Submit file to batch_api_endpoint.​
- Poll job status until completion.​
- Emit results downstream.​
​
Configuration:​
- ml.batch.enabled (Boolean) – default: false​
- ml.batch.size (Int) – default: 10​
- ml.batch.api.endpoint (String) – required​
- ml.batch.poll.interval (Duration) – default: 10s​
- ml.batch.local.dir (Path) – default: /tmp/flink_batches​
- ml.batch.max.wait (Duration) – default: 10m 



4. Example Flow 
1. Flink reads 10 Kafka records.​
2. Write them to /tmp/batch_12345.jsonl.​
3. POSTs file to /ml/api/batch_predict.​
4. Polls GET /ml/api/batch/status/{job_id}.​
5. Once COMPLETED, fetches results and emits downstream. 

5.  Design Alternatives & Trade-offs 

Option 1 – In-Operator Polling (Stateful Approach) 

Flink stores the batch_id in operator state, keeps polling the batch API until completion, 

retrieves results, and emits them downstream. 

●​ ✅ Pros — exactly-once semantics, single-operator ownership, easier recovery 

●​ ❌ Cons — more complex operator, potential backpressure, API polling load​
 

Option 2 – External Polling Process (Decoupled Approach) 

Flink only submits the batch job and writes the batch_id + metadata to a Kafka response topic. 

A separate process (Flink job or another service) later polls the API, retrieves results, and 

emits them. 

●​ ✅ Pros — simpler operator, scalable polling, flexible architecture 

●​ ❌ Cons — more moving parts, loss of exactly-once, higher latency, needs another 

process​
 

 

 

6. Pseudocode Implementation 
Option1: 

def process_batch(records):​
    # Step 1: Write records to JSONL​
    with open("/tmp/batch_input.jsonl", "w") as f:​
        for r in records:​
            f.write(json.dumps(r) + "\n")​
​
    # Step 2: Submit batch​
    response = requests.post(BATCH_API_URL, files={"file": open("/tmp/batch_input.jsonl", "rb")})​
    batch_id = response.json()["id"]​
​
    # Step 3: Poll until completion​
    while True:​
        status_resp = requests.get(f"{BATCH_API_URL}/{batch_id}")​



        status_data = status_resp.json()​
        if status_data["status"] == "completed":​
            break​
        elif status_data["status"] == "failed":​
            raise Exception("Batch processing failed")​
        time.sleep(10)​
​
    # Step 4: Retrieve results​
    results_url = status_data.get("results_url")​
    results_resp = requests.get(results_url)​
    results = results_resp.json()​
​
    # Step 5: Emit results downstream​
    for r in results:​
        emit_to_flink_sink(r) 

Option 2: 

​ def process_batch(records):​
    ​ # Step 1: Write records to JSONL​
    ​ with open("/tmp/batch_input.jsonl", "w") as f:​
       ​  for r in records:​
            ​ ​ f.write(json.dumps(r) + "\n")​
​
    ​ # Step 2: Submit batch​
   ​  response = requests.post(BATCH_API_URL, files={"file": open("/tmp/batch_input.jsonl", "rb")})​
    ​ batch_id = response.json()["id"] 

                   # Step 3: Prepare metadata 

    ​ metadata = { 

"batch_id": batch_id, 

        ​ ​ "submitted_at": time.time(), 

        ​ ​ "record_count": len(records), 

        ​ ​ "input_file": "/tmp/batch_input.jsonl", 

        ​ ​ "results_topic": "ml_batch_results", 

        ​ ​ "api_endpoint": BATCH_API_URL, 

        ​ ​ "status": "submitted" 

    ​ } 

# Step 4: Emit results downstream​
emit_to_flink_sink(metadata) 

​
 

​  



 

6. Compatibility, Deprecation, Migration Plan 
- New operator, not replacing existing ones.​
- Synchronous ML_Predict remains unchanged.​
- Jobs not enabling ml.batch.enabled continue normal operation. 

7. Testing Plan 
- Unit tests for batching, file creation, job submission, polling, and results.​
- Integration tests with mock batch API.​
- Fault injection for timeouts.​
- Performance testing for various batch sizes. 

8. Metrics and Monitoring 
- batch.jobs.submitted​
- batch.jobs.completed​
- batch.jobs.failed​
- batch.job.latency_ms​
- batch.records_per_job 

9. Rollout and Risk 
Risks:​
- Temporary file management and cleanup.​
- API rate limits or slow polling.​
Mitigation:​
- Configurable polling interval and job limits.​
Rollout:​
- Feature flag ml.batch.enabled=false by default.​
- Gradual rollout with monitoring. 

10. Next Steps 
1. Discussion & approval on mailing list.​
2. Implement operator in experimental namespace.​
3. Add documentation and configuration examples.​
4. Integration testing with batch API.​
5. Merge and release. 
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