FLIP-XXX: Batch Inference Support for ML_Predict Integration

State: Draft

Release: Targeted for Flink 1.xx
Discussion Thread:

Created: November 09, 2025
Authors: Rahul Bhattacharya

1. Motivation

Currently, our ML_Predict operator or sink calls the inference API synchronously for each
record.

For large Kafka streams or expensive models, this leads to excessive API calls, slow
throughput, and high cost.

Batching significantly improves efficiency:
e Batch API calls are typically ~50% cheaper than synchronous calls.

e Posting grouped records also improves throughput and reduces API throttling risks.

This FLIP proposes a batch inference mechanism in which a Flink operator:

1. Collects a group of records from the source.
2. Writes them into a temporary JSONL file.

3. Uploads the file to the model’s Batch API.

4. Monitors completion status.

5. Emits the results downstream once ready.

This enables efficient integration with ML batch inference APIs while preserving
exactly-once semantics.

2. Public Interfaces

New Parameters in ML_Predict:

Parameter

batch

batch_number

ml.batch.api.endpoint

ml.batch.poll.interval

ml.batch.local.dir

Type

Boolean

String

String

Duration

Path

Description

Enables batch inference mode

Unique identifier for each batch submission

Endpoint for batch inference API

Interval between status polls

Local temporary directory for batch files

These are managed by the Flink operator when batch=true.

3. Proposed Changes

New Operator: BatchInferenceOperator

Responsibilities:

- Buffer incoming records until a threshold is reached.
- Write them to a temporary .jsonl file.

- Submit file to batch_api_endpoint.

- Poll job status until completion.
- Emit results downstream.

Configuration:

- ml.batch.enabled (Boolean) - default: false
- ml.batch.size (Int) - default: 10
- ml.batch.api.endpoint (String) - required

- ml.batch.pollinterval (Duration) - default: 10s

- ml.batch.local.dir (Path) - default: /tmp/flink_batches
- ml.batch.max.wait (Duration) - default: 10m

4. Example Flow

1. Flink reads 10 Kafka records.

2. Write them to /tmp/batch_12345.jsonl.

3. POSTs file to /ml/api/batch_predict.

4. Polls GET /ml/api/batch/status/{job_id}.

5. Once COMPLETED, fetches results and emits downstream.

5. Design Alternatives & Trade-offs

Option 1 — In-Operator Polling (Stateful Approach)

Flink stores the batch_id in operator state, keeps polling the batch API until completion,
retrieves results, and emits them downstream.

] Pros — exactly-once semantics, single-operator ownership, easier recovery
° x Cons — more complex operator, potential backpressure, APl polling load

Option 2 — External Polling Process (Decoupled Approach)

Flink only submits the batch job and writes the batch_id + metadata to a Kafka response topic.
A separate process (Flink job or another service) later polls the API, retrieves results, and
emits them.

° Pros — simpler operator, scalable polling, flexible architecture
e){ Cons — more moving parts, loss of exactly-once, higher latency, needs another
process

6. Pseudocode Implementation
Option1:

def process_batch(records):
Step 1: Write records to JSONL
with open("/tmp/batch_input.jsonl”, "w") as f:
forrin records:
f.write(json.dumps(r) + "\n")

Step 2: Submit batch
response = requests.post(BATCH_API_URL, files={"file": open("/tmp/batch_input.jsonl", "rb")})
batch_id = response.json()["id"]

Step 3: Poll until completion
while True:
status_resp = requests.get(f"{BATCH_API_URL}/{batch_id}")

status_data = status_resp.json()
if status_data["status"] == "completed":

break
elif status_data["status"] == "failed":

raise Exception("Batch processing failed")
time.sleep(10)

Step 4: Retrieve results

results_url = status_data.get("results_url")
results_resp = requests.get(results_url)
results = results_resp.json()

Step 5: Emit results downstream

forrin results:
emit_to_flink_sink(r)

Option 2:

def process_batch(records):
Step 1: Write records to JSONL
with open("/tmp/batch_input.jsonl”, "w") as f:
forrin records:
fwrite(json.dumps(r) + "\n")
Step 2: Submit batch

response = requests.post(BATCH_API_URL, files={"file": open("/tmp/batch_input.jsonl", "rb")})
batch_id = response.json()["id"]

Step 3: Prepare metadata

metadata = {
"batch_id": batch_id,
"submitted_at": time.time(),
"record_count": len(records),
"input_file": "/tmp/batch_input.jsonl",
"results_topic": "ml_batch_results",

"api_endpoint”: BATCH_API_URL,

"status": "submitted"”

Step 4: Emit results downstream
emit_to_flink_sink(metadata)

6. Compatibility, Deprecation, Migration Plan

- New operator, not replacing existing ones.

- Synchronous ML_Predict remains unchanged.

- Jobs not enabling ml.batch.enabled continue normal operation.

7. Testing Plan

- Unit tests for batching, file creation, job submission, polling, and results.
- Integration tests with mock batch APL

- Fault injection for timeouts.

- Performance testing for various batch sizes.

8. Metrics and Monitoring
- batch.jobs.submitted

- batch.jobs.completed

- batch.jobs.failed

- batch.job.latency_ms

- batch.records_per_job

9. Rollout and Risk

Risks:

- Temporary file management and cleanup.

- API rate limits or slow polling.

Mitigation:

- Configurable polling interval and job limits.
Rollout:

- Feature flag ml.batch.enabled=false by default.
- Gradual rollout with monitoring.

10. Next Steps

1. Discussion & approval on mailing list.

2. Implement operator in experimental namespace.
3. Add documentation and configuration examples.
4. Integration testing with batch APL.

5. Merge and release.

	FLIP-XXX: Batch Inference Support for ML_Predict Integration
	1. Motivation
	2. Public Interfaces
	3. Proposed Changes
	4. Example Flow
	5. Design Alternatives & Trade-offs
	Option 1 – In-Operator Polling (Stateful Approach)

	Flink stores the batch_id in operator state, keeps polling the batch API until completion, retrieves results, and emits them downstream.
	●​✅ Pros — exactly-once semantics, single-operator ownership, easier recovery
	●​❌ Cons — more complex operator, potential backpressure, API polling load​
	Option 2 – External Polling Process (Decoupled Approach)

	Flink only submits the batch job and writes the batch_id + metadata to a Kafka response topic.
	A separate process (Flink job or another service) later polls the API, retrieves results, and emits them.
	●​✅ Pros — simpler operator, scalable polling, flexible architecture
	●​❌ Cons — more moving parts, loss of exactly-once, higher latency, needs another process​
	
	
	6. Pseudocode Implementation
	6. Compatibility, Deprecation, Migration Plan
	7. Testing Plan
	8. Metrics and Monitoring
	9. Rollout and Risk
	10. Next Steps

