Virtual Service chaining

Shared with Istio Community

A

.
Owner: hzxuzhonghu, Neeraj Poddar Status: WIP | In Review | Approved | Obsolete
Working Group: Networking Created: 11/29/2019

Approvers: Louis Ryan [], Lin Sun [], Shriram
Rajagopalan [], John Howard [], Joshua Blatt []

TL;DR

Based on_RFE: Virtual Service Delegation. But is slightly different in API, if you have read
that proposal, just jump to Solution.

Intro

This document proposes enhancements to the Istio VirtualService spec which will allow
mesh routing configuration to be specified in multiple composable VirtualService resources
which can be chained together to create advanced traffic routing functionality in a user
friendly way. Composable VirtualService resources allow organizations with different teams
to maintain ownership of routing resources for the services they create while allowing
operators to manage Gateway and Ingress level routing to get traffic into the mesh and
forward it to the appropriate backend end service routing resources.

Background

The current VirtualService spec requires all the route rules for a host to be specified in a
single resource ordered by priority. The destination hosts for the routes in the virtual services
can only be one of the service names discovered from the platform’s service registry or
hosts declared in the ServiceEntry resources. The combination of these restrictions lead to
the following operational challenges:

e A \VirtualService resource can quickly grow in size if an organization has large
number of routes based on paths for a single hosthame. For example if the
host “mycompany.com” has path based routing where prefix “/svcA” points to the
service “svcA.team-svcA.svc.cluster.local” and “/svcB” points to the service
“svcB.team-svcB.svc.cluster.local”, currently all the sub-routes for these services

https://docs.google.com/document/d/17K0Tbp2Hv1RAkpFxVTIYPLQRuceyUnABtt0amd9ZVow/edit?usp=sharing
https://istio.io/docs/reference/config/istio.networking.v1alpha3/#VirtualService
https://istio.io/docs/reference/config/networking/gateway/
https://istio.io/docs/reference/config/networking/virtual-service/#Destination
https://preliminary.istio.io/docs/reference/config/istio.networking.v1alpha3/#ServiceEntry

will have to be specified in a single VirtualService as they share the hostname
“‘mycompany.com”. As the size of the VirtualService resource increases it gets
harder to manage and reason about routes affecting a particular host and debug
configuration related issues.

e VirtualService resources include routing config for services/functionalities owned
by different teams. The example mentioned above highlights this issue as route
rules for services “svcA” and “svcB need to be specified in a single VirtualService
resource even though these services can be in different namespaces owned by
separate application teams. Additionally, the public hostnames (in this example
“‘mycompany.com”) which are owned by operators (SecOps/NetOps) specified in
a VirtualService also contain the route rules for backend services (in this example
“svcA and svcB”) which are owned by application teams.

e ltis difficult to enforce Kubernetes RBAC policies for VirtualService resources.
This is a side effect of the point above as you need ownership semantics for
resources to enforce RBAC.

e |tis difficult for multi services to do blue-green deployment in parallel, especially
when they belong to different teams. There is a race, and the later team’s config
can revert the previous one. This requires them to do upgrade in order strictly.
But it is unacceptable when these services are all part of a big system and it need
upgrade ASAP to reduce the influence at most.

e In case a new service deployed, it is hard to add the route for it. The matching
conditions is strictly ordered.

This proposal aims to solve the challenges mentioned above while reducing the operating
complexity of managing a Istio cluster.

Solution

This proposal suggests a solution which is slightly different with REE: Virtual Service
Delegation.

The HTTPRoute specification will be augmented to allow chaining VirtualService resources
in addition to the HTTPRouteDestination defined in it.

https://docs.google.com/document/d/17K0Tbp2Hv1RAkpFxVTIYPLQRuceyUnABtt0amd9ZVow/edit?usp=sharing
https://docs.google.com/document/d/17K0Tbp2Hv1RAkpFxVTIYPLQRuceyUnABtt0amd9ZVow/edit?usp=sharing
https://istio.io/docs/reference/config/networking/virtual-service/#HTTPRoute

In the new model the configuration flows like this:

e Multiple users (or team's) write the VirtualService(s) for the services they own.

e VirtualService from one team (“mycompany-vs” from the above example) can

delegate or forward to route rules in other VirtualService resources.

This is the configuration in the new VirtualService model:

apiVersion:
networking.istio.iofvialpha3
kind: VirlualService
metadata:
name: mycompany-vs
namespace: team-operator
sSpec:
hosts:
= "mycompany.com”
hittp:
- match:
- uri:
prefis: “favoA”
delegate:
name: svoA-vs
namespace: nNsa
- match:
- uri:
prefix: */svcB”
delegate:
name: svcB-vs
namespace: nsB

The overall delegate principle is as below:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
name: svoA-vs
namespace: NsA
Spec:
http:
- match:
- headers:
x-experiment-id:
axact: "sveh-expenment-1
route:
- destination:
host: svcA-experiment-1.nsA. sve.cluster.local
- route:
= destination:
host: svcA.nsA.svo.clusterlocal

apiVersion: networking.istio.iofv1alpha3
kind: VirtualService
metadala:
namea; svcB-vs
namespace: nsB
spec:
hitp:
- route:
- destination:
host: sveB.nsB.sve.cluster.local

share common domain, like

mycompany.com
y pany sVCA-vs

VS1

- match condition1””]

svcB-vs — Deploy/Upgrade
independently without
influencing others

- match condition2

- match condition3- |

svcC-vs

Multiple micro services share one common domain

Ingress gateway routing the traffic/request based on the matching result
Decouple the routing rules of each service with each other

Allow upgrading/deployment independently

The controlplane has the responsibility to validate whether there is a conflict. As this
procedure can be very complicated since there are many match attributes for HTTP, we can
reduce this complex and the possibility of conflicts in two dimensions:

1. Do not allow the chaining routes exceed 2 tiers (rarely users need so many tiers of
routing rules)

2. The root HTTPRoute can at most have one HTTPMatchRequest, otherwise the
matching rules will be multiplexed by the number of the root and the delegator’s
HTTPMatchRequest.

Istio controlplane(pilot) also has the responsibility to merge the chaining VirtualServices into
one. The merged VirtualService should look like the one that is written manually. And if there
is a conflict, the conflicted route rules will not take any effect.

Using this model allows application teams to write route rules for their services they own
independent of other services even if they share the same hostname. Additionally, the
VirtualService with public hostname is managed by operators which can delegate to the
application team VirtualService resources as needed.

API Changes

A new field “delegate” is added to VirtualService HTTPRoute section. Adding this new field
maintains backward API compatibility as only one of “route” “redirect” or “delegate” can be
specified for a route destination.

type HTTPRoute struct ({

// The name assigned to the route for debugging purposes. The

// route's name will be concatenated with the match's name and
will

// be logged in the access logs for requests matching this

// route/match.

Name string “protobuf:"bytes,17,opt,name=name,proto3"
json:"name, omitempty""’

// Match conditions to be satisfied for the rule to be

// activated. All conditions inside a single match block have
AND

// semantics, while the list of match blocks have OR semantics.
The rule

// 1s matched if any one of the match blocks succeed.

Match []*HTTPMatchRequest
‘protobuf:"bytes, 1, rep,name=match,proto3" json:"match,omitempty""

// A http rule can either redirect or forward (default)
traffic. The

// forwarding target can be one of several versions of a
service (see

// glossary in beginning of document). Weights associated with
the

// service version determine the proportion of traffic it
receives.

Route []*HTTPRouteDestination
‘protobuf:"bytes, 2, rep, name=route, proto3" json:"route,omitempty"’

// A http rule can either redirect or forward (default)
traffic. If

// traffic passthrough option is specified in the rule,

// route/redirect will be ignored. The redirect primitive can
be used to

// send a HTTP 301 redirect to a different URI or Authority.

Redirect *HTTPRedirect
"protobuf:"bytes, 3, 0pt, name=redirect,proto3"
json:"redirect,omitempty"”

// Rewrite HTTP URIs and Authority headers. Rewrite cannot be
used with

// Redirect primitive. Rewrite will be performed before

forwarding.

Rewrite *HTTPRewrite
‘protobuf:"bytes, 4, 0opt, name=rewrite,proto3"
json:"rewrite,omitempty"’

// Optional: Delegate is used to specify the name of the
delegated virtualservice.

// It can be set only when route and redirect are empty. The
route rules of the cascading virtualservice will be merged with
// that in the root virtualservice. The merge sementic is

"AND®

// Note:

// 1. The chaining virtualservice can only specify HTTP
type route, otherwise these two virtualservices are invalid.

// 2. The chaining virtualservice's hosts feild must be
empty, which is used to judge if it is a delegated VS.

Delegate *Delegate

// The delegated VirtualService
type Delegate struct {
// The name of the VS
Name string
// The namespace of the VS
Namespace string

Another change allowed in the current APl is making the VirtualService “spec.hosts” field
optional, and for the delegate VertualService the hosts must be empty. So empty hosts
indicates it is a delegator and will not take effect standing alone. Otherwise it may introduce
unknown behavior when applied alone.

Add a delegate to TLSRoute
type TLSRoute struct {

// Match conditions to be satisfied for the rule to be

// activated. All conditions inside a single match block have
AND

// semantics, while the list of match blocks have OR
semantics. The rule

// 1s matched if any one of the match blocks succeed.

Match []*TLSMatchAttributes
‘protobuf:"bytes, 1, rep, name=match,proto3" json:"match,omitempty""

// The destination to which the connection should be
forwarded to.

Route []*RouteDestination
‘protobuf:"bytes, 2, rep, name=route, proto3" json:"route,omitempty"’
// Only one of ‘Route’ and 'Delegate’ can be specified
Delegate *Delegate

type TCPRoute struct {

// Match conditions to be satisfied for the rule to be

// activated. All conditions inside a single match block have
AND

// semantics, while the list of match blocks have OR
semantics. The rule

// 1s matched if any one of the match blocks succeed.

Match []*L4MatchAttributes
‘protobuf:"bytes, 1, rep, name=match,proto3" Jjson:"match,omitempty""’

// The destination to which the connection should be
forwarded to.

Route []*RouteDestination
‘protobuf:"bytes, 2, rep, name=route, proto3" Jjson:"route,omitempty"’

// Only one of “Route’ and 'Delegate’ can be specified
Delegate *Delegate

Pilot should walk down the chain of VirtualServices and merge the route rules as described
in the next section.

Merging VirtualServices

This is the most hard part, it has to detect conflicts between root and delegate VS, and
merge them if no conflicts. The below show the basic model and how we can do that:

HTTPMatchRequest 1

HTTPMatchRequestN

or

Delegate VS

Delegate model

Fig 1. delegate model

Delegate VS

Root VS

Fig 2. Expected merged VS

PmPMatChRequestl _
deleqate _

HTTPMatchRequestN _

Delegate VS

Fig 3. N HTTPMatchRequests per HTTPRoute

H-I—I-PMatchRequestl _
deleqate _

HTTPMatchRequestN

Delegate VS

How to merge HTTPRoute

Fig 4. HTTPRoute merge

HTTPMatchRequest 1 HTTPMatchRequest1

HTTPMatchRequest N HTTPMatchRequestM

Each HTTPMatchRequestfrom delegate
must be a subset of any one of the root,

otherwise conflict

At most N*M HTTPMatchRequests

HTTPMatchRequest Merge

Fig 5. HTTPMatchRequestMerge

The route rules from the root VirtualService are merged by the Pilot with the child
(delegated) VirtualService, and this is the most complex part. And once there is a conflict,
the route rules will not take effect. So a delegate’s match conditions must match a strict
subset of the root’s match conditions. In order to make pilot be able to detect conflict and
merge route rules, we have to set a lot of restrictions for different fields.

HTTPRoute merging semantics

This table suggests how to detect conflicts and merge route rules based on the restrictions:

HTTPRoute fields Restrict Merge logic Conflict condition
Match [J* The root See below table
VirtualService

have one Match,

https://istio.io/docs/reference/config/networking/virtual-service/#HTTPMatchRequest

Route

Can not be set
with Delegate or

Take the delegator’s

Redirect
Redirect Can not be set Take the delegator’s
with Route or If more than one of these fields
Delegate set, the route is invalid.
Delegate Can not be set NA
with Route or
Redirect
- Rewrite NA The merging NA
semantics should be:
- Timeout use delegator’s value if
) set, otherwise use that
- Retries of the root.
- Fault
- Mirror

- MirrorPercent

- CorsPolicy

Headers

See below table

HTTPMatchRequest merging semantics:

The merging requires no conflicts, the delegate’s matching conditions must be a subset of

the root.
HTTPMatchRequest fields | Restrict Merge logic Conflict condition
Name The delegator’'s name | NA

will override the root’s
if set.

https://istio.io/docs/reference/config/networking/virtual-service/#HTTPMatchRequest
https://istio.io/docs/reference/config/networking/virtual-service/#HTTPMatchRequest

Uri

No regex match should be
specified, for it is difficult to
judge whether there is a conflict.

The delegator’s Uri will
override the root’s if
set.

delegate Uri is not
a subset of the
root’s.

-Scheme
-Method

-Authority

No regex can be set

Same as Uri

delegate is not a
subset of the root’s.

- Headers
- WithoutHeaders

- QueryParams

No regex can be set

Union

If the delegate’s is
not a subset of the
root.

For example, if a
header name
specified in both
root and delegate,
but the delegate’s
is not a subset of
root. e.g.

{keyA: {exact: foo} }
conflicts with {keyA:
{exact: bar} }

Sourcelabels

union

Not same value for
a single key

Gateways Overide if set If the delegate is
not a subset of root

Port Set to the non 0 value | Not same value if
both are set

IgnoreUriCase The values are not

not equal

HTTPRoute.Headers merging semantics

HTTPRoute.Headers fields | Restrict

- Request

- Response

Merge logic

Conflict condition

Set

logic Union, merge the map if not
intersected; otherwise the delegator’s
value will override the root’s for the same
key.

set from root VS { a: va, b:vb} merge
with{b:vbb, c:vc} from delegate, the output
is {a: va,b:vbb, c:vc}

No conflicts

Add

Union: for the intersected key, the value
will be joined with a comma, which is the
envoy behavior.

No conflicts

Remove

Union slices

No conflicts

TLSMatchAttributes merging semantics

- DestinationSubnets

TLSMatchAttrib | Merge logic Conflict condition
utes
- SniHosts The delegated VS | The delegated VS’s SniHosts are not

overrides the root’s | subset of the root’s

https://istio.io/docs/reference/config/networking/virtual-service/#Headers
https://istio.io/docs/reference/config/networking/virtual-service/#Headers

Port

The portin
delegate will
override the root’s
if set

If set but not equal

SourceSubnet

NA

NA deprecated field

SourcelLabels

The delegate’s
override the root’s

Not a subset of the root

Gateways

Set the non empty
value

If both set, but not same

L4MatchAttributes merging semantics

TLSMatchAttrib
utes

Merge logic

Conflict condition

DestinationSubnets

The delegated VS
overrides the root’s

The delegated VS’s SniHosts are not
subset of the root’s

Port The portin If set but not equal
delegate will
override the root’s
if set

SourceSubnet NA NA, deprecated field

Sourcelabels The delegate’s Not a subset of the root
override the root’s

Gateways Set the non empty | If both set, but not same
value

Validation

1. Delegated VirtualService Hosts must be empty. So in validation, should allow empty
Hosts.

2. Regex match is forbidden for fields like Uri, Scheme, Authority,QueryParams, etc.

3. Delegated VirtualService is allowed to contain only HTTP Route. TLS and TCP not
supported, we don't allow route to different protocol at the first draft.

4. Delegated VirtualService can not be delegated, this is mainly for simplicity.

5. VirtualService HTTP Route validate should only allow setting one of delegate, route
and redirect.

Alternative Approaches

Merging VR

Merging Istio’'s HTTPMatchRequest. This has been widely discussed, and the matching
conditions are too complex. So it seems not feasible.

Gateways/VirtualService per team

This can not tackle the case when multi micro services from different teams share a common
domain.

Put delegate under Destination

Basically, delegation should be in the same hierarchy as destination. Currently, traffic is only
routed to a specific destination when matched by a lot of fine grained conditions. Making
delegate under destination is confusing and also the merging will have to handle a lot of ops
like header mutation other than matching conditions merge.

https://istio.io/docs/reference/config/networking/virtual-service/#HTTPMatchRequest

SHRIRAM: Separate Include Block in VirtualService

Virtual service can have a separate include section that specifies names of other virtual services
and conditions under which these virtual services should be included.

Eg

host: foo.com
IncludeVirtualServices:
- resource: nsl/vsl
condition:
- httpMatch:
urimatchHasPrefix: /barbar
hasHeaderMatchesFor: x-envoy-blah
- tlsMatch:
usesSni: foo.example.com

This will cause pilot to only include the http rules that have /barbar as a prefix or exact match in
the vs1 virtual service in the ns1 namespace.

