Overview

Visual andox
User Guide

Topics

Quick Tutorials
Blueprint Structure
Third Person Game Mode

Changelog
Developer Notes

Introduction

Visual Sandbox is a free-to-use complete project for Unreal Engine 5, for a fast prototyping that
includes a collection of pre-made Blueprints with cars, guns, items and more, featuring a
character capable of running, shooting, and driving from an over-the-shoulder perspective. The
entire template was built 100% with Blueprint, with a clean and simple design, fully accessible
to be explored and modified without writing a single line of code.

Requirements

User Prerequisites
e Good English skills
e Good knowledge of Unreal Engine and Blueprint programming
e Unreal Engine version 5.5 or higher installed
e Chaos Vehicles Plugin Activated in Unreal Engine 5

Minimum Hardware Requirements
e Operating System: Windows 10 (64-bit)
e Processor: Intel or AMD quad-core, 2.5 GHz or higher

e RAM:8GB
e Graphics Card: DirectX 11 or 12 compatible
e Storage: SSD with at least 256 GB of free space

Recommended Hardware Requirements
e Operating System: Windows 11 (64-bit)
Processor: Intel i7/i9 or AMD Ryzen 7/9
RAM: 32 GB or more
Graphics Card: NVIDIA RTX 2080 or AMD Radeon RX 5700 XT or better
Storage: NVMe SSD with at least 1 TB of free space

Downloading and Installation

Downloading from Gumroad Store

After getting the Visual Sandbox from the gumroad store, you will be redirected to the VS
content page on gumroas

1. Choose the desired project version and click the download button.

Openin app

Visual Sandbox

Your rating: VisualSandbox v1.4.7

ot
No written review

Release date: Aug 7, 2025
List of change:

-ltem Storage System
-Framework Structure Changes

Receipt > -New Functions
-Pause Menu Screen added
Library 3 -Inventor screen Ul Redesign
-New Respawning System
-Bug fixed

Visual Sandbox

i Visual Sandbox v1.3.5
i a8 z:;u?o:nmsm ’

2. A Zip file of the Visual Sandbox Project will be downloaded. extract the contents of the
Zip file to the desired folder

Visual Sandbox Visual Sandbox
v13.5 v1.3.5

3. Open the Visual Sandbox folder and run the VisualSandbox.exe file and the unreal
engine 5 editor will automatically open the project

Config
Content
m VisualSandbox

You can also rename the VisualSandbox.exe file to any name you desire.

4. The default showcase map will be loaded, and it’s done!

Downloading from Fab.com

After getting the Visual Sandbox from Fab.com

1. Open the Epic Games Launcher
2. Find Visual Sandbox in your Library and click Create Project
3. Choose the Installation location and click Create

http://fab.com

Installing Chaos Vehicles Plugin.

Once the project launches, it will automatically load the default showcase map, and you may
need to activate the Chaos Vehicles Plugin. a native plugin of the unreal engine to unlock
wheeled vehicle class for cars. Without this plugin activated, cars will not appear on the editor.

Activating the Chaos Vehicles Plugin.

1. On the top of the editor window, click on Edit > Plugins

Window Tools Build Select Actor Help

£% Undo History

'\ Editor Preferences...
wi Project Settings ...
% Plugins

2. On the Plugins panel search for Chaos Vehicles Plugin and click on the check box to
activate it.

+ add = plugin Directories
All Plugins

= ALL PLUGINS

iugin Experimental
1

3. Once activated, restart the editor to apply the change.

The Third Person Shooter game mode is already set as the default Game Mode in the project
settings. This means no manual configuration is required after installation.

About The Author

My name is Silas Santos, I'm a 29 years old Brazilian, currently living and working in Japan.

| have a lot of experience in Unreal Engine, Blueprint, and C++ programming, as well as 3D
modeling, texturing, and optimization techniques, acquired over years of intensive practice
using different types of software. | also have strong skills in graphic design, video editing and
music production, developed over decades of study and practice since my childhood. All these
skills combined have given me a broad understanding of game development with an artistic
touch.

My recent works
© Warwolf Project - (Castle builder game) Alpha Trailer 2023

© Top Down Shooter Pro v1.4 - Showcase

https://youtu.be/U1i1O97ivDY?si=m6tcZ94mC4hb5FWB
https://youtu.be/4fA4QK_FdlM

Quick Tutorials

Player
e How to change the HUD Widget?

e How to add New Input Actions?
e How to customize the Third Person Camera?

Items
e Howt new Firearm?
e How to add a new item?

e How to change ltem Widget?

Storage System
e How to make a global inventory?

Sentry Gun
e How do | set the sentry gun to rotate 360 degrees?

NPCs
e How to make NPC kill each other?
e How to change NPC initial weapons?
e How to remove NPCs Health bar?

Quick Questions

1. Is it replicated?
Visual Sandbox is designed for single player experience

2. Is it possible to implement replication?
It is totally possible to implement replication, however you will need some extra work.

3. Can |l use Visual Sandbox for commercial purposes?
It’s not recommended for commercial use in this version, because many improvements
still need to be made. however nothing prevents you from using it commercially as long
as you know what you are doing.

4. Where can | find character movement input actions?
All input actions for character movements and actions are within the
BP_ShooterCharacter blueprint.

5. How does the respawn system work?
See, When the BP_ShooterCharacter's health points reach 0, the Dying Event of the
Shooter Character is triggered. The Dying Event, in turn, notifies the player controller
that the pawn is dead through the Report Pawn Death Interface event. The
BP_ThirdPerson_PC sends a respawn request to BP_VS_GameMode, which in turn
searches for BP_RespawnPoint closest to the player's death location and spawn a
new BP_ShooterCharacter pawn to be possessed by the BP_ThirdPerson_PC again.
ending the respawning cycle.

New tutorials and answers coming soon, in the meantime you can send your question directly
to the New Visual Sandbox server on discord
Server Link: https://discord.ga/NYZ8HDn3U5

Changing the HUD widget

1. Locate and open the BP_ThirdPerson_HUD on the Content browser

https://discord.gg/NYZ8HDn3U5

2. Change the HUD Template value to another desired User Widget.
Tools Help

son_HUD X

fide Unrelated L gs # Class Defaults

x . Details

+add Q P’ ThirdPar | Q

BP_ThirdPerson_HUD (¢

LY
-+ add

GRAPHS

3. Hit compile, and it’s done.

Adding New Action Input

1. Locate and open the IMC_ShooterCharacter on the Content Browser

2. Click on plus sign to add a new Action Mapping
s~ Fie Edit Asset Window Tools Help
(AL)

[} |MC_ShooterCharacter X

r Mappings

Mappings (&) 1J

EMELEN Adds Action Mapping (Gl RO W]

1A_BulletTime

1A_Interact

€@
€
€
&
G
€
@
G
@
G
@
G
G
G

v Description

Description

3. Select the desired Action Input Asset from the dropdown menu, and bind an input key
on it.

=1 Edit i t Window

(A1)

(82 |MC_ShooterCharacters x

i

A Details

24 Input Action
har
' Copy

Clear

Mame =

Data Asset (Input Action)

Mone
r Description

Desg ::'[IF’.iZ.' I

You can also change the input key of pre-existing Input Actions from here.

7z o~ File Edit isset Window Tools Help
(A1)

0]
=z

IMC_ShooterCharacters =

-

v Mappings

r Mappings ()

!

14

1&_BulletTime
|A_Interact
|&_Exit_Vehicle

|A_Pause

I&_HolsterWeapon
ription

ription

Customizing the Third Person Shooter Camera
1. Locate and open the BP_ThirdPerson_Pawn

(AL)

+Add &

» Favorites

ndbox

File t Jebug Window Tools Help

(AL)

nit B er BP_ThirdPerson_Pawn*

BE

C

[components
+ Add

terinventory

terHealth

and change the default values on the Detail tab to desired Camera distance and offset
Camera
Target Arm Length

Socket Offset

Do Collizsion Test

Camera Settings

Use Pawn Control Rot

Inherit Pitct

Inherit ¥aw

Inherit Roll

Creating a new Gun
1. Import the Weapon Assets

® All > Content > Fl indle > Weapons

This AK model is a free Asset from Fab.com

2. Open the Weapon Skeletal Mesh and add two additional sockets, one called “Muzzle”
where the projectile will be shooted attached on the tip of the Gun, and another one

https://www.fab.com/listings/8aeb9c48-b404-4dcd-9e56-1d0ecedba7f5

called “EjectionPort” attached to the capsule ejection port.

w Tools Hel

1 asset editor was open when the
editor was last closed. Would you like
tore-open it?

Without a Physical Asset assigned, Unreal Engine cannot simulate physics and the
weapon will float when dropped.

4. Create a new Blueprint picking BP_Firearm as parent class.

¥ COMMON
B Actor
[]
I Pawn

® character

trolling a
Player Controller =

5P
Game Mode Base i S s,

[# Actor Component
A& Scene Component

¥ ALL CLASSES

?_Inve

X Firearm

5 iterns (1 selected)

Cancel

4+ Add &P Fab Viimport |E Save sl @

b Favorites 5] Filters

¥ VisualSandbox &)

Name it.

5. Open the new blueprint, and set all the default properties of the weapon such as
number of rounds, max rounds, rate of fire, weapon, icon on the Detail tab.

A Details
Q
ACTOT 1ICK
Firearm
Weapon Damage
Rounds 30
Max Rounds 30

Rate Of Fire 600,0

Ammo Class BP_Ammo_Rifle v (& I") X

Fully Automatic

FXS_Capsule_Ejection

€K

Ejection FX

Weap_Rifle_Fire_Montage

oLz

Firing Animation

Dry Shot

Shot Corretion

Component Tick
Default
[term
Iltem Name
Iltem Image
el T_AKAT
Imia
mage ‘7* € .
Image Size
Tint
Draw As Image
Tiling Mo Tile

Preview Horizonta | Ce Vertical A

6. Go to the viewport and set the weapon skeletal mesh by replacing the Skeletal Mesh
slot of the WeaponMesh Component.

W Debug Help

77 o~ File Edit
(AL)
BP_AK

or
[# components

-+ Add Q

omponentd

= Weapon Mesh

At Proj Shooter

And back to detail tab and set the muzzle properties such as Projectile Class to shoot,

Deviation Angle to simulate inacuracy, Firing sound and visual effect

EP Firearm Q, #

& Details

00"
1.0
Mobility Stationary Movable
Sockets
Projectile Shooter
Projectile Damage 10,0
Projectile BP_Proj_Bullet s
Deviation Angle 0.1
Number C ts 1

sts Fired

Firing Sound

{ Qrientation

e Max Range

Moize Event Tag

8. Hit compile and it's done

B Content Browser

;'ng Compile

Good to go

Now there are two ways to equip the weapon that you just created, the first one is just drag
and drop the weapon blueprint from the content browser straight into level, and pick up
during the game by touching it. and open the inventory pressing ‘Q” and click on the
weapon and click on Equip button from the drop down menu to equip.

I e -

+add &PFab dyimport [@savenl ®

b Favorites

/
[

[[]

///////
7777771
o

Now you can shoot around

The second way is adding directly on the Inventory of Third Person for that:
1. Locate and open the BP_ThirdPerson_Pawn.

File Tools Help

(L)

+ Add) Co it % 3lueprints > ThirdPerson

b Favorites Filters

v VisualSandbox
Al

BR_TI
Person_HUD

2. Onthe Component tab click on the Character Inventory Component, and go to the
details tab and find the “Initial ltems” array
File Edit View Jebug Tools Help

BP_ThirdPerson_Pawn

E | (8] mpile : Diff v lide Unrelated : {:{-
[components Vie 't I Eve
-+ Add Q

® BP_ThirdPer Pawn (Self)

[+ Characterinventory

3. On the “Initial Items” click on plus sign and choose the desired Weapon class that you
want to be spawned within the inventory as initial weapon.

A Details

Variahle
Variable Mame

Tooltip

Parent

Inventory

Default

On ltems A

On [tem

on Inven [FP_Amm
Component Tick

art with Tick Enabled

Tick Interval (s

v Component Replication

4. Hit compile and press play and open the Inventory by pressing “Q” and you will find the

weapon there

5. Click on the weapon slots and select equip from the drop down menu to equip

Creating a new item in 7 steps

1.

Download and import all assets related to your item, including mesh, textures, materials
and 2D icon, into the editor

NOTE: Make sure to add collision to your item. Without collision the unreal engine
cannot simulate the physics of the item, and it will be floating in the air during the
gameplay.

https://www.fab.com/listings/2646b42a-7be7-4504-abb9-92171d149ea4

2. Create a new blueprint class picking BP_ltem as parent class.

¥ COMMON

ned in the

9_ Actor

I Pawn
® Character

trolling a

&4 Player Controller
Game Mode Base itk
[# Actor Component

&t Scene Component

¥ ALL CLASSES

P_itern

Cancel

3. Open the item blueprint you just created, and go to the Viewport.
4. Select the ltem Mesh component from the Components tab, then go to the Details tab
and replace the Static Mesh slot with your desired static mesh asset.

5. Go back to the Class Defaults' Details tab and set all the specifications for your item,
such as the item name, description, icon, and so on.

ltem
ltem Name
Iten

Iltem Image

Prev
Handling
How To Hold
Name
t Mame

Can be Pic

Can be Equipped

Can be
Can be Divided
Can be

Crafting

Image
Mo Tile

Inbeerit

File Edit Azset View Debug

BP_ltem_Red_Apple "

iofcompile @ =g Diff v

Learn more: held | Ctrl + -'-"-|[_|

Hit compile, and it’s done.

6. Go back to the Content Browser and drag the item blueprint directly into the level.

(© All > Content » Tutorials

Filters

B

BP_lterm_Red_| M _Red_sppls R
Apple ¢
Blueprint Class

7. Hit Play and pick up the item by pressing the interaction button during gameplay.

Crafting Menu

When you open the inventory, you will be able to drag and drop items to move or
discard.

\

As of version 1.4, you can equip any item from your inventory, currently you can only
equip weapons and grenades

Changing Iltem Widget

1. Locate and open the BP_ltem blueprint on the Content Browser

F Favorites

¥ VisualSandbox

BP_Item

Biueprint Class

/l\

2. On the components tab select the AC_ActorWidgetComponen
File Edit

BP_ltem

ind *% Hide Unrelated :

ki

Item

Drawer B Output Log cmd v

3. With the AC_ActorWidgetComponent still selected, look for Widget Class on
the details tab, and change the widget class value.

If you don't want any widget to appear, just delete the SC_ActorWidgetComponent and
you'll be fine.

Making Global Storage System
1. Add two BP_Storage blueprint into the level

=2

s
-a,\\\ e
.
B Ao N
— = <
+aAdd ZPFab Yimport [save sl © Al > Content > Vi box > Blueprints > Props
F Favorites Q Filters = Q

+ Add

b Favorites

¥ VisualSandbox

I\

The BP_Inventory_Network is an Inventory server that can be accessed from
anywhere on the map

3. Select the two chests. go to the details tab, and look for the Inventory Server variable.

4. Click on the dropper icon
(Dinosaur Sprite)

and pick the BP_Inventory_Network placed on the level

By doing this, both chests are now connected to the same inventory network, and can
be accessed by one or the other.

5. To add ltems to the inventory, Select the Inventory Network, go to the Details tab, and
click on Inventory Component
6. Going further down, look for the Initial Items array.
dit ~ Window Tools Build t ern
_ShowcaseMap*

> i Hpa

7 Details ® = Outliner

@ BP_Inventory_Network2

Network

% Billb d

[# Inventory é_ print

B & &

b Crafting

7. Click on plus sign and choose the desired item from the drop down menu

& Details ¥ = Outliner y i Env. Ligh

@ BP_Inventory_Network2 + add

¢ Inventory

Inventory Name

v Initial ltems

Crafting

Asset User Data

MNavigation

add as many items as you want

r Inventory

Inwentory Name

Inventory Initial Size

Inventory Max Size

Initial ltems 5 Array elements
BP_Comp_Fuse w

BP_Weap_Pistol

IIVENTONY HEVER V=i O1{ed 4 = e

You will notice that the items you added will appear there, and you can just drag and
drop them into the player's inventory.

See, both chests are now connected to the same inventory server, this means that you
can place each chest in different places on the map and they will still access the same
inventory.

Changing Sentry Gun Rotation Angle

See, the rotation of the turret gun is limited by the angle of sight perception of the Al
Controller. If you want to increase the turret's rotation angle, you just need to:

1. Open the BP_SentryGunController blueprint.

2. Navigate to the components tab, and select Al Perception Component

3. With the Al Perception Component still selected, go to the details tab and look for
PeripheralVisionHalfAngleDegrees. Increase it to 180, and it’s done.
This will enhance the turret's sight perception, allowing it to detect enemies in all
directions.

Changing NPC Team Index

1. Select the NPC whose team index you want to change

2. Go to the details tab and look for Team Index value.
= Outliner @ Env_Light Mi

lz=] ® BP_Guard6

=

® BP Guards (Self)

Animation

Element 1

Simulation Upat

‘ L =S ok b & Radial Im
Each NPC has a team index including the player, if each one has a different
team index number they will start killing each other.

1 asset editor was open when the
editor was last closed.Would you like

The same goes for the sentry guns.

Changing NPC initial weapon
Method 1

1.

In the Content Browser, find and open the BP_Guard Blueprint.

2. Inthe Components tab, select the Character Inventory component.

3. With Character Inventory still selected, go to the Details tab and find the Initial ltems
array.

4. Click the plus icon and select your desired weapon from the dropdown menu.

5. Compile the Blueprint, and you're done!

Method 2

1. Find and select the NPC you want to edit in the level.

2. With the NPC selected, go to the Details tab and locate the Character Inventory
component.

3. Look for the Initial Items array.

4. Click the plus icon and select your desired weapon from the dropdown menu.

Removing NPC Health Bar

1.

Locate and open the BP_Guard blueprint on the content browser.

2. Go to the component tab, and simply delete the Health Bar Comp.
3. Hit Compile, and it’s done.

Blueprint Structure

Blueprint Structure

Number Of Blueprints: 98

The Visual Sandbox blueprints are organized by category within the Blueprints folder.

File Edit Window Too

Lvl_ShowcaseMap
+ add ZPFab 3y Import

b Favorites Q,

+ VisualSandbox Q,

= All

= Conten

m Audio
w [Blueprints

e

Furthermore, Enumerations, Structures, Input Actions and User Widget, which have a direct link
to blueprint, are inside the same folder.

Naming convention prefix

Prefix Asset Type Example

BP Blueprint BP_Firearm

WBP User Widget WBP_HealthGauge
E Enumerations EFiringMode

F Structures FPlayerResources
IA Input Actions IA_Shoot

Blueprints Class Hierarchy
e Actor (41 subclasses)
o BP_ltem
m BP_ltem_Skeletal
e BP _Firearm
o BP_Weap_AssaultRifle
BP_Weap_PhysicsGun
BP_Weap_Pistol
BP_Weap_RocketLauncher
BP_Weap_Shotgun
m BP_Throwable_Bomb
e BP_Bomb_Grenade
e BP_Bomb_PipeBomb
m BP_ltem_IFAK
e BP_Vitamin_Drink
e BP_Energy_Drink
s BP_Ammo
e BP_Ammo_Handgun
e BP_Ammo_Rifle
e BP_Ammo_Rocket
e BP_Ammo_Shotgun
BP_Item_Money
BP_Comp_Bottle_Water
BP_Comp_BoxOfNails
BP_Comp_Fuse
BP_Comp_Gunpowder

O O O O

o O O

O

o

BP_Comp_PVC_Pipe
BP_Comp_Vitamin_Powder

BP_Pickup_Base

BP_Health_Spawner
BP_InventoryExpansion_Spawner
BP_Crafting_Recipe_Spawner

BP_Portal
BP_Projectile

BP_Proj_Bullet
BP_Proj_Rocket
BP_Proj_Missile

BP_Storage

BP_Storage_Case

BP_Prop_Eletronic_Dice
BP_Inventory_Network
BP_Button
BP_Ceiling_Lamps
AlCotnroller (3 subclasses)
BP_BotController

BP_ShooterController
BP_SentryGunController

BTDecorator Blueprint Base (3 subclasses)
BP_Shooter_IsEquipped
BP_CheckAmmo

BP_IsAlive

BTService Blueprint Base (1 subclasses)
BP_FindRandomLocation

BTTask Blueprint Base (13 subclasses)
BP_CheckTargetOnSight
BP_LookAt
BP_ClearBlackboardValues
BP_Shooter_Task

O
O
©)
©)

O

O
O
@)

BP_Shooter_Task_Aim
BP_Shooter_Task_EquipWeapon
BP_Shooter_Task_Overwatch
BP_Shooter_Task_ReloadWeapon
BP_Shooter_Task_Shoot

BP_SentryGunTask

BP_SentryGun_CheckTargetOnSight
BP_SentryGun_LockOn

m BP_SentryGun_Shoot
Actor Component (2 subclasses)

o AC_HealthComponent

o AC_InventoryComponent
Scene Component (3 subclasses)

o SC_ActorWidgetComponent
SC_HealthBarComponent
SC_ExplosionComponent Removed

o SC_ProjectileShooterComponent
Character (4 subclasses)

o BP_MasterCharacter

m BP_ShooterChatacter
e BP_Guard
e BP_ThirdPerson_Pawn
TargetPoint (2 subclasses)

o BP_RespawnPoint

o BP_VehicleSpawner
StaticMeshActor (3 subclasses)

o BP_Prop_ExplosiveActor

m BP_Prop_ExplosiveBarrel
m BP_Prop_Landmine_Trap
Pawn (2 subclasses)

o BP_SentryGun

o BP_Venhicle
WheeledVehiclePawn (Chaos Vehicles Plugin) (2 subclasses)

o BP_Vehicle Car

m BP_Vehicle_Car_Custom
ChaosVehicleWheel (2 subclasses)

o SportsCar_WheelsFront

o SportsCar_WheelsRear
Blueprintinterface (6 subclasses)

o

O

o BPI_Bot

o BPI_Game

o BPI_HUD

o BPI_Physics
o BPI_Useful
o BPI_Vehicle

Macro Library (1 subclasses)
o BP_UsefulMacros
Function Library (2 subclasses)

o BP_UsefulFunctions
o BP_Physics_Calculation
GameMode (2 subclasses)
o BP_VS_GameMode
m BP_ThirdPerson_GameMode
PlayerController (2 subclasses)
o BP_VS_PlayerController
m BP_ThirdPerson_PC
HUD (2 subclasses)
o BP_VS_HUD
m BP_ThirdPerson_HUD
PlayerCameraManager (1 subclasses)
o BP_VS_Camera_Manager
DragDropOperation (1 subclasses)
o BP_Inventory_DragDropOperation

Third Person Game Mode

Third Person Shooter Game Mode

By default, Visual Sandbox (VS) includes a third-person shooter game mode that features a
character capable of running, shooting, and driving from an over-the-shoulder perspective.

el

This game mode was essentially built by using and combining different blueprints from the
Visual Sandbox Blueprints library.

Third Person Shooter Classes:

Game Mode Class BP_ThirdPerson_GameMode

Player Controller Class BP ThirdPerson PC

HUD Class BP_ThirdPerson_HUD

Default Pawn Class BP Third Person Pawn

These are the only custom classes created exclusively for the Third Person game mode. All
other features like Shooter Character, Inventory System, Guns and NPC are part of the VSB
library

BP_ThirdPerson_GameMode
BP_VS_GameMode
Content/VisualSandbox/Blueprints/GameModes/ThirdPerson

It all starts with this simple subclass that defines all the TPS game classes, such as player
controller, HUD and player pawn. It does not contain any custom logic, functions, or events. It
just defines which classes will be loaded in TPS mode at the beginning of the game.

This game mode is already set as the Default Game Mode in the Project Settings, meaning that
any newly created map will automatically load this mode in the World Settings. Pressing Play
will launch the third-person mode by default.

BP_ThirdPerson_PlayerController
BP_VS_PC
Content/VisualSandbox/Blueprints/GameModes/ThirdPerson

This is the Controller class of the TPS game that will control the player’s character, configuring
the Input Mapping Context to receive player input actions. It handles the camera control
rotation via IA_Look input action mapped to mouse movement.

It also includes inputs for:

Activate / Deactivate Bullet Time

Switch between Default Look Sensitivity and Aiming Sensitivity
Requesting respawn upon death

Restarting the game

Exiting the game

On the Details tab, you can adjust look sensitivity and invert the mouse Y-axis if needed.

BP_ThirdPerson_HUD
BP_VS_HUD
Content/VisualSandbox/Blueprints/GameModes/ThirdPerson

This class is responsible for creating and projecting the all HUD widget elements onto the
screen.

At the beginning of the game, this class creates the HUD widget, Inventory Widget individually
and receives inputs to display on the player's screen.

BP Third Person Pawn
BP_ShooterCharacter
Content/VisualSandbox/Blueprints/GameModes/ThirdPerson

This is the player-controlled character, inheriting core systems from BP_ShooterCharacter,
such as:
e Movement
Weapon and equipment management
Inventory
Health system

Additionally, it implements a third-person over-the-shoulder camera using a Spring Arm
attached to the character.
This class is ideal for configuring camera behavior, player stats, and initial inventory items.

As you can see, the classes used in the Third Person Gamemode are simple and
purpose-driven. Each one inherits functionality from its parent class and organizes the
necessary elements to deliver a cohesive third-person gameplay experience.

This modular approach makes the structure easy to understand and highly customizable,
allowing users to tweak or replace specific parts without disrupting the overall system.

Changelog

Version: 1.5.8 Helicopter & framework struct improvement
Release date: coming soon
List of change:

Flying vehicles

Save and load system
Checkpoint system

Main Menu

Door system

Ul change and improvement
Blueprint optimization
Framework struct change

Version: 1.4.7 ltem Storage System Implemented
Release date: Aug 7, 2025
List of change:

e Item Storage System - | implemented a storage system similar to Resident Evil 2. And
there are two types of storage, local and global. Local storage stores items only in a
specific chest, while global storage shares the same items in different chests.

e Framework Structure Changes - major changes to the framework structure. Some
blueprints have been changed and improved, and others were deprecated.

e New Functions - | implemented two new functions within the Useful Function Library:
Spawn Explosion and Hitscan. These two functions can be called by any blueprint that
is a subclass of Actor.

e Pause Menu Screen added
e Inventory screen Ul Redesign
e New Respawning System

Version: 1.3.5 - Crafting System implemented
Release date: Jun 16, 2025
List of change:

e The crafting system was implemented within the AC_InventoryComponent, and a
new user widget class for the Crafting Panel was added to the WBP_Inventory_Screen
to display the crafting menu widget.

e New pickable items added

o Pickable crafting recipes added: now there are a blueprint class called
BP_Crafting_Recipes_Spawner, which generates the crafting recipe for an item
defined in the blueprint details tab

e Blueprint Changes: previously the BP_ShooterCharacter could pick up items by
overlapping them, now it is necessary to press the interaction button to pick up items.

e [tems icons was update

e Ammo pack mesh changed

Version: 1.2.4 - Drivable Car added
Release date: May 28, 2025
List of change:

e Drivable car added: now the Shooter Character has gained the ability to drive car
around and run over NPCs

¢ New Showcase map added

e Blueprint fixes and improvements

Version: 1.1.2 - Physics Gun added
Release date: May 9, 2025

List of change:

e Physics Gun Added: | implemented a new gun similar to the Gravity Gun from Half Life
2, which | called Physics Gun to avoid legal problems. With it, you can play around by
grabbing any static mesh or skeletal mesh that is simulating physics and throwing it in
any direction. The result was a lot of fun and the Physics Gun blueprint is fully
accessible for you to explore and see how it was made.

Version: 1.0.0 - Asset Released
Asset release date: May 6, 2025

Developer Note

Over 7 years working with Unreal Engine, | have noticed some limitations and inconsistencies
in this engine, which end up requiring laborious and bureaucratic solutions. In this section, |
have documented some of the challenges | have encountered when using it.

e Al Control Rotation: By default, Unreal Engine doesn't pitch view to the Al Control
Rotation, so the Al only looks along the horizontal axis and ignores the vertical axis.
This can be an issue for projects where the Al needs to look up or down. There’s

actually a piece of code in AlController.cpp file that tells the Al to ignore pitch rotation
unless a focus actor is set.

AlController.cpp & + X

=

= uEs - |- AAIController
429 ~ wvoid AAIController::UpdateControlRotation(float DeltaTime, bool bUpdatePawn)
u3e o
431 APawn* const MyPawn = GetPawn();
432 w if (MyPawn)
433 {
13t FRotator NewControlRotation = GetControlRotation()
436 // Look toward focus
437 const FVector FocalPoint = GetFocalPoint();
43g w if (FAISystem::IsValidlLocation(FecalPodint))
u3g f
yug NewControlRotation = (FocalPoint — MyPawn->GetPawnViewLocation()).Rotation();
41 }
4y w else if (bSetControlRotationFromPawnOrientation)
1443 {
fITIm| NewControlRotation = MyPawn->GetActorRotation();
yus }
uuyg
4y7 // Don't pitch view unless looking at another pawn
TT1%:] e if (NewControlRotation.Pitch != B && Cast<APawn=(GetFocusActor()) == nullptr)
L9 i
use NewControlRotation.Pitch = 8.f;
451 i)

O]

[l
5,0
L4

SetControlRotation(NewControlRotation);

y if (bUpdatePawn)
yse {
us57 const FRotator CurrentPawnRotation = MyPawn->GetActerRotation();
458
459 w if (CurrentPawnRotation.Equals(NewControlRotation, le-3f) == false)

{

MyPawn—>FaceRotation(NewCentrolRotation, DeltaTime);
)
}

}

}

See, this is the part of the Al Controller code that clearly says to ignore the pitch view
for Control Rotation. | haven't yet found a definitive solution to solve this issue using
Blueprint, but with C++ you can create a new C++ class picking AlController.h as
parent class, and override the UpdateControlRotation() function and copy the code
(from the Image above) except for the part that blocks the pitch view and paste it into
the new Al Controller Class.

Physics simulation: Unreal Engine frequently shows inconsistencies in physics
simulation, especially when there’s interaction with the player. Sometimes, physics
simulated objects go flying with just the slightest touch from another object, the physics
system may flicking, or objects may pass through walls, and sometimes the character
simply does not respond to the physics collision, some features that are difficult to
emulate with unreal engine are realistic impact force, and this is very frustrating for new
projects involving realistic physics simulation. Additionally, the engine struggles to
accurately replicate physics on skeletal meshes, requiring specific techniques to better
handle these cases. Despite these limitations, Unreal Engine’s physics simulation is

quite impressive and can be effectively applied in games and simulations, as long as
you’re mindful of its constraints.

Run Over: When you place a character in the level and try to run them over with a
vehicle, you’ll notice that the car stops abruptly upon impact, as if it had hit a concrete
wall, meanwhile, the character remains unaffected. This happens because the vehicle is
colliding with the character’s collision capsule, which does not simulate physics at all
and cannot be pushed or affected by external forces. There are a few ways to
implement run-over in Unreal Engine. One common method is to set the character’s
capsule to overlap with vehicles and apply full damage as soon as the vehicle passes
through the capsule. However, this approach is inefficient; even a light touch from the
vehicle would instantly kill the character, as if it had been hit at full speed. Even if you
implement logic to scale damage based on the vehicle’s speed, there’s another
problem—since the collision is set to overlap, the vehicle will pass through the
character mesh without any physical interaction, making it feel unrealistic and visually
incorrect. One method I’'ve implemented is using a capsule trace around the character
to detect nearby vehicles. When a vehicle is detected, the system checks its speed. If
the vehicle is moving at high speed, the character’s collision capsule is temporarily set
to overlap with vehicles. If the vehicle then overlaps the capsule, full damage is applied
to the character, resulting in instant death. However, if the detected vehicle is moving at
low speed, the collision capsule remains in block mode. This way, if the vehicle bumps
into the character gently, it won’t cause any damage, as the overlap doesn’t occur and
the collision remains physically reactive without triggering the run-over logic. However,
this is a provisional method of running over characters and | am studying more efficient
and definitive techniques for running over.

Terrain texture tiling repetition: When you apply a grass texture to a huge landscape,
you quickly notice the repeating pattern, which makes the terrain looks ugly and
unsuitable for games where the terrain is seen from sky (RTS games or flying
simulators). There are several common approaches to handle texture tiling issues, such
as using texture mosaics, macro noise, color and size variation, or texture blending. But
all of these techniques just mask the problem without truly solving it and can be
unnecessarily complicated. | believe there’s still a much simpler solution out there
waiting to be discovered, one that could be extremely valuable.

Ul Icon Rendering: In Unreal Engine, HUD icons tend to get jagged and lose quality
when their size is changed. A practical solution is to keep the icons at their original size,
even when the screen resolution changes

Fab: As a producer and seller, I've encountered numerous issues with Fab.com Epic
Games’ new asset platform that replaced the Unreal Marketplace in October 2024.

The original Unreal Marketplace was entirely focused on Unreal Engine. Customers and
sellers had full confidence that everything listed there was designed specifically for
Unreal. It was a reliable, specialized platform.

In 2023, however, Epic Games announced plans to unify several of its content stores —
including the Unreal Engine Marketplace, Sketchfab Store, Quixel Megascans, and
ArtStation Marketplace into a single platform called Fab.

What initially sounded like a promising idea turned out to be a complete disaster in
practice.

The transition to Fab.com was rushed, poorly communicated, and the platform
launched prematurely with missing features and dysfunctional with a confusing,
unintuitive, and disorganized user interface. It had a clean visual design, but functionally
it was inefficient.

Fab ended up mixing assets from all these different platforms into a single space.
Previously, customers browsing the Unreal Marketplace knew they were purchasing
content for Unreal Engine. Now, on Fab, everything is jumbled together, leaving
customers confused and uncertain whether the assets are for Unreal Engine, Unity,
Blender, or other platforms.

And to complete this big mess, Fab.com was flooded with Al-generated assets. All
content created with the help of Al is supposed to be labeled with the CreatedWithAl
tag to indicate its origin. However, despite this requirement, moderation is largely
automated and ineffective. Sellers can mislabel their own items or choose not to label
them at all and in most cases, these assets are neither removed nor manually reviewed.
The result has been a wave of frustration and loss of trust in the platform, from both
customers and sellers. Some producers have reported sharp drops in sales, which has
discouraged the development of new assets.

In summary, the launch of Fab was rushed, premature, dysfunctional, and quickly
flooded with Al generated content. This led to customer dissatisfaction and drastic
drops in sales since the platform’s release. In the end, the whole situation left many
customers and sellers feeling orphaned, unsure of where to buy or sell. I’'m not here to
criticize Fab, I’'m simply sharing what happened based on public reports and personal
experience. In fact, | hope Fab recovers from this big mess. Meanwhile, many sellers
and customers are moving to alternative platforms, such as Gumroad, which offers
more control, features and freedom.

	Overview
	Visual Sandbox​User Guide
	Topics
	Introduction
	Requirements
	Downloading and Installation
	About The Author

	Quick Tutorials
	Quick Tutorials
	Quick Questions
	Changing the HUD widget
	Adding New Action Input
	
	
	
	
	

	Customizing the Third Person Shooter Camera
	
	
	
	
	

	Creating a new Gun
	Creating a new item in 7 steps
	Changing Item Widget
	Making Global Storage System
	Changing Sentry Gun Rotation Angle
	Changing NPC Team Index
	Changing NPC initial weapon
	Removing NPC Health Bar
	
	Blueprint Structure
	Blueprint Structure
	Third Person Game Mode
	Third Person Shooter Game Mode
	Changelog
	Developer Note

