CMSC 401

Algorithm Analysis with Advanced Data Structures Spring 2025 Syllabus

Catalog listing: CMSC 401

Course Level: Undergraduate

Prerequisites: CMSC 256 and CMSC 302

Instructor:

Office: email:

Classroom: MW 4:00 PM – 5:15 PM

Class website: CANVAS
Office Hours: F 12-2pm

TAs:

Office hour: TR 3-4pm, F 11am-12pm

Office hour: M/W 3-4pm

1.0 - Overview (Catalog Course Description):

Semester course; 3 lecture hours. 3 credits. Prerequisites: CMSC 256 with a grade of C or better and CMSC 302 with a grade of C or better. Topics covered include foundations of algorithm and complexity analysis, advanced data structures including heaps, B-trees, hashing and graph representation; incorporating data structures into object-oriented design; analysis of various searching, sorting and shortest-path algorithms. Algorithm design topics include divide-and-conquer, dynamic programming and greedy methods.

2.0 - Course Structure:

Lecture hours/week – 3 Lab hours/week – 0

3.0 - Course Goals

Upon successful completion of this course, the student will be able to:

- Apply mathematical knowledge to analyze algorithm's computational complexity
- Use knowledge of computing to prove correctness of algorithms
- Make correct design choices on the type of data structures and the type of the algorithms to use to solve given problems

4.0 - ABET Criteria Addressed:

- 1. Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions.
- 2. Design, implement, and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program's discipline.
- 6. Apply computer science theory and software development fundamentals to produce computing-based solutions.

Other Criteria Addressed:

• Substantial coverage of algorithms and complexity, computer science theory, concepts of programming languages, and software development.

5.0 - Major Topics Covered:

- Foundations of algorithm and complexity analysis
- Solving recurrences
- Divide and conquer approach
- Advanced Data Structures
- Sorting and Order Statistics
- Advanced design and analysis techniques
- Graph algorithms (BFS, DFS, Dijkstra, MST, Max-Flow)
- Greedy Approach
- Dynamic programming

6.0 - Textbook(s):

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, "Introduction to Algorithms, Fourth Edition"

Book is available online at VCU library https://ebookcentral.proquest.com/lib/VCU/detail.action?docID=6925615

7.0 - Class Schedule:

• Lecture: M/W 4:00 PM – 5:15 PM

• Lab: None

8.0 - Evaluation:

General Instructions:

Exams: There will be 2 tests and one final exam. **Tentative** Exam Schedule:

- Test 1: February 17, Topics: Lectures 0-8
- Test 2: March 19, Topics: Lectures 9-16
- Final exam: April 23, Topics: Mostly Lectures 17-24 (may include content from Test 1-2 topics)

No make-ups for exams (unless special permission has been given prior to the date of the test.)

Course assignments:

- 4 programming assignments
- 3 theory assignments

Late submissions: 1 day: 20% penalty, 2 days 40% penalty, after 2 days not accepted (no excuses, plan accordingly).

Grading:

Category	% weight
Participation Quiz	5% (5-10 of them)
Programming Assignments	30% (7.5% each)
Theory Assignments	15% (5% each)
Test 1	15%
Test 2	15%
Final exam	20%

Final grade:

A (85% - 100%), B (70% - 84.99%), C (60% - 69.99%), D (50%-59.99%), F (0% - 49.99%)

9.0- Resources needed:

Java compiler - required Canvas - required

Discord - recommended, for asynchronous Q&A outside of office hours Standard computing resources (computer, operating system, editor, PDF viewer, email client, web browser etc.) - required

Students should also visit http://go.vcu.edu/syllabus and review all syllabus statement information. The full university syllabus statement includes information on safety, registration, the VCU Honor Code, student conduct, withdrawal and more.