SoD 2024 Skill Trees

These skill trees outline the skills developers need to pick up on their development journey at
Oppia.

These trees are works in progress and subject to change. The Web tree is somewhat more
developed than the Android tree. SoD applicants are welcome to use these draft trees to help
write their SOls, but they should acknowledge that the trees are not yet final.

Bolded skills or skill headings are tentative tutorials. skills are ones we expect
developers to go elsewhere to learn (though we will point them to resources we think are good)
or have already learned. Skills in red are advanced enough that they do not need tutorials. They
will likely only be used by established Oppia devs who can learn what they need from our
reference documentation. Writing and maintaining tutorials for these skills is likely more work
than it's worth. Skills in bold are ones we plan to write or adapt tutorials for. Some skills are not
bolded because we have pages for them already that we don’t anticipate changing.

Oppia Web

The tree illustrates the possible roles, teams, and subteams at Oppia, where a user progresses
down the table to more advanced roles over time and chooses teams and subteams to focus
on.

The skills for each position are listed on the right. The skills are additive, so a collaborator needs
all the skills of a new contributor, and a collaborator on the linter subteam also needs the skills
listed for the more general roles “dev workflow” and “collaborator”. A member will have the skills
of one collaborator position (e.g. the dev workflow dependencies subteam) but likely not all
collaborator positions.

Role Team Subteam Skills
New e Setup
Contributor o Getting started guide

m What wiki pages
contributors should read
and when

o Installing Oppia

m Setting up your IDE
o How to access Oppia webpages
m Include Glossary of terms

page

m Move user docs to
oppia.github.io
Get assigned your first issue
Understand starter-level issues
Ask for help
Navigate the codebase
Trace how data and execution flow
through code
Figure out what code to change
Clearly propose a solution to a
starter-level issue
Solve your first starter issue
o Follow test-driven development
o Write clear, robust code
o Run code quality checks (e.g.
linters, tests, type checking),
understand output, and resolve
failures
o Debug, including how to efficiently
and methodically identify the root
cause of a bug. How to write a
debugging doc.
o Use git from the command line
Create a good PR
o Check and prove that a PR is
correct (designing the user journey
to show, showing log outputs,
making a screen recording)
o Respond to and address review
comments
o Debug Cl failures

O O O O

Backend

Frontend

Collaborator

Write and get feedback on TDDs
How to test a feature thoroughly
o For example, release QA

Write, run, and fix E2E tests

Write, run, and fix acceptance tests
Figure out how a feature works
end-to-end

Dev
Workflow

Write types for Python code

Read, write, and modify GitHub Actions
workflows and actions

Read, write, and modify the pre-commit
and pre-submit checks

Linter

Write and debug lint checks
Modify the lint check runners

Backend
Tests

Write, run, and fix backend unit tests
Modify the backend test runner
Modify the coverage check infrastructure

Frontend
Tests

Write, run, and fix frontend unit tests.
Modify the frontend test runner
Modify the coverage check infrastructure

E2E and
Acceptance
Tests

Debug Cl flakes
Modify the E2E test runner
Modify the acceptance test runner

Dependencies

Modify how Oppia’s dependency
management systems
(dependencies.json, pip, package.json,
miscellaneous) work
Add, remove, and upgrade
dependencies
o Vet a third-party dependency for
security and maintenance
o Read changelogs and check for
breaking changes

Release

Modify how releases are built and
deployed

Organize release testing

Serve as a release coordinator

LACE
and CD

Backend

Fix a backend bug

Work

Write, run, and fix backend unit tests
Write types for Python code
Fix a bug involving emails

Beam Jobs

Write your first beam job
o Includes writing the testing doc
Design good beam jobs
o Includes robustness, safe and
noisy failures, and adding sufficient
logging for debugging

Frontend
Work

Fix a frontend bug
Write, run, and fix frontend unit tests.

Make a simple Ul change
Write types for Typescript code

Server
Errors

Figure out reproduction steps from
server error logs

Fix server errors that cannot be
reproduced

All
Teams

Project
Organizer

Triage issues
Keep GitHub Project board up to date
Answer GitHub Discussions

Member

When to merge PRs

When to rerun failing Cl checks

Apply the revert and regression policy to
PRs that introduce regressions (including
flakes).

Codeowner

How to do a good code review
o Review code for quality,
correctness, and security
o Leave clear review comments

Grouping into tasks of approximately equal size (small is roughly half of medium, and large is
roughly 50% larger than medium):

e Task

[Large] Fix a backend bug

[Medium] Write types for Python code

[Large] Fix a frontend bug

[Medium] Write, run, and fix acceptance tests

Task

o

O O O O

[Large] Figure out how a feature works end-to-end.
[Medium] Write types for Typescript code

[Large] Write and debug lint checks
[Medium] Read, write, and modify the pre-commit and pre-submit checks

[Large] Fix a bug involving emails
[Small] Keep GitHub Project board up to date
[Small] Solve your first starter issue

[Medium] Write your first beam job
[Small] Answer GitHub Discussions
[Small] Create a good PR

[Small] Triage issues

[Small] How to test a feature thoroughly

[Medium] Design good beam jobs
[Medium] How to do a good code review
[Small] Get assigned your first issue
[Small] How to access Oppia webpages

[Large] Debug ClI flakes
[Medium] Figure out reproduction steps from server error logs

[Medium] Write, run, and fix backend unit tests
[Medium] Fix server errors that cannot be reproduced

[Small] Write and get feedback on TDDs
[Small] Getting started guide

[Medium] Write, run, and fix frontend unit tests.

[Medium] Add, remove, and upgrade dependencies

[Small] Read, write, and modify GitHub Actions workflows and actions
[Small] Installing Oppia

[Medium] Re-organize Sidebar. A draft sidebar is in B Draft Wiki Sidebars

m In “Guidelines for developers with write access to oppia/oppia” replace
oppia/oppia with “the Oppia repository”

m Fold https://github.com/oppia/oppia/wiki/Release-accessibility-checklist
into “Coding and testing for accessibility”

m Move https://github.com/oppia/oppia/wiki/Common-pull-request-workflows
into “Make a Pull Request” and call it “Rules for making PRs”. The
reference material from “Common pull request workflows” can move to a
new page in the dev workflow section.

m Fold the “Formatters” and “Bytes and string handling in Python 3” pages
into the coding style guide.

https://docs.google.com/document/d/1W6r4AW7WOP5MzJhoRKRS73IhXLj-KKo3_HDRRWHg2D4/edit
https://github.com/oppia/oppia/wiki/Release-accessibility-checklist
https://github.com/oppia/oppia/wiki/Common-pull-request-workflows

m Fold “Interpreting GitHubActions Results” into “If Cl checks fail on your
PR”

Oppia Android

Initially written by Ben Henning.

The tree illustrates the possible roles on the Android team, where a user progresses down the
table to more advanced roles over time. The skills for each position are listed on the right. Some
skills are required, while for other priority levels, contributors will pick up skills as needed.

Role Priority Skills

New Required e Setup
Contributor

e Get assigned your first issue
Understand starter-level issues
Ask for help
Navigate the codebase
Trace how data and execution flow through
code
Figure out what code to change
Clearly propose a solution to a starter-level
issue
e Solve your first starter issue
o Follow test-focused development (e.g. all new
and changed code should have tests)
m Write excellent unit tests
Write clear, robust code
Run code quality checks (e.g. linters, tests,
type checking), understand output, and resolve
failures
o Debug, including how to efficiently and
methodically identify the root cause of a bug.
How to write a debugging doc.

O O O O

o O

o Use bazel from the command line
e Your first PR

o Check and prove that a PR is correct
(designing the user journey to show, showing
log outputs, making a screen recording)
Filling out the PR template
Respond to and address review comments
(particularly important)

o Debug Cl failures

Established | Required
Contributor
Write, run, and fix unit tests
Understanding & using Dagger (basics)
Core Android Adding a new Android dependency

domain-speci
fic knowledge
to pick up on

over time

o Prereqgs: Android Studio, Kotlin, Bazel
& Oppia DataProviders

o Preregs: Android Basics, Kotlin
Creating a new controller in Oppia Android

o Prereq: coroutines & DataProviders
Read and translate mocks into code using
view/data binding concepts

o Preregs: Android Studio, Kotlin
Creating a new Ul in Oppia Android (includes the
boilerplate and high-level Ul dataflow, mention
livedata stuff)

o Prereqgs: Controllers, Mocks

Core general
software
development
knowledge to
pick up on
over time

Creating a new controller and a new Ul
o Prereqgs: Android Studio, Kotlin, Navigate the
codebase
How to root cause a bug (an end-to-end example)
o Prereq: navigating the codebase
How to root source a bug (e.g. find the offending
commit)
o Prereq: Git
Advanced testing guide: how to detect, and avoid,
flakes in Robolectric & Espresso
o Prereqgs: writing excellent unit tests, data
providers
How to communicate technical concepts
effectively (e.g. how to ask better questions and
give sufficient context with them)

e Writing a TDD: an end-to-end example (video &
sample TDD)
o Prereqgs: navigating the codebase, effective
technical communication

Advanced
Contributor

e Creating a new static analysis check

Tasks of approximately equal size:

Task

o

[Large] Creating a new Ul in Oppia Android (includes the boilerplate and
high-level Ul dataflow, livedata, databinding)
[Small] How to communicate technical concepts effectively

[Large] Creating a new controller and a new Ul
[Small] How to create an effective pull request that anyone on the team can
easily understand

[Large] How to root cause a bug (an end-to-end example)
[Small] Writing a TDD: an end-to-end example (video & sample TDD)

[Large] Advanced testing guide: how to detect, and avoid, flakes in Robolectric &
Espresso

[Medium] Basics of Android development
[Small] Get assigned your first issue

[Medium] Effective debugging in Android
[Small] Solve your first starter issue

[Medium] Understanding & using Dagger (basics)
[Small] Your first PR

[Medium] Adding a new Android dependency
[Small] How to use Android Studio effectively

[Medium] Kotlin coroutines & Oppia DataProviders
[Medium] Creating a new controller in Oppia Android

[Medium] Read and translate mocks into code using view/data binding concepts
[Medium] How to root source a bug (e.g. find the offending commit)

	SoD 2024 Skill Trees
	Oppia Web
	Oppia Android

