
SoD 2024 Skill Trees
These skill trees outline the skills developers need to pick up on their development journey at
Oppia.

These trees are works in progress and subject to change. The Web tree is somewhat more
developed than the Android tree. SoD applicants are welcome to use these draft trees to help
write their SOIs, but they should acknowledge that the trees are not yet final.

Bolded skills or skill headings are tentative tutorials. Grayed-out skills are ones we expect
developers to go elsewhere to learn (though we will point them to resources we think are good)
or have already learned. Skills in red are advanced enough that they do not need tutorials. They
will likely only be used by established Oppia devs who can learn what they need from our
reference documentation. Writing and maintaining tutorials for these skills is likely more work
than it’s worth. Skills in bold are ones we plan to write or adapt tutorials for. Some skills are not
bolded because we have pages for them already that we don’t anticipate changing.

Oppia Web
The tree illustrates the possible roles, teams, and subteams at Oppia, where a user progresses
down the table to more advanced roles over time and chooses teams and subteams to focus
on.

The skills for each position are listed on the right. The skills are additive, so a collaborator needs
all the skills of a new contributor, and a collaborator on the linter subteam also needs the skills
listed for the more general roles “dev workflow” and “collaborator”. A member will have the skills
of one collaborator position (e.g. the dev workflow dependencies subteam) but likely not all
collaborator positions.

Role Team Subteam Skills

New
Contributor

 ●​ Setup
○​ Getting started guide

■​ What wiki pages
contributors should read
and when

○​ Installing Oppia
■​ Command-line basics.
■​ Setting up your IDE

○​ How to access Oppia webpages
■​ Include Glossary of terms

page

■​ Move user docs to
oppia.github.io

●​ Get assigned your first issue
○​ Understand starter-level issues
○​ Ask for help
○​ Navigate the codebase
○​ Trace how data and execution flow

through code
○​ Figure out what code to change
○​ Clearly propose a solution to a

starter-level issue
●​ Solve your first starter issue

○​ Follow test-driven development
○​ Write clear, robust code
○​ Run code quality checks (e.g.

linters, tests, type checking),
understand output, and resolve
failures

○​ Debug, including how to efficiently
and methodically identify the root
cause of a bug. How to write a
debugging doc.

○​ Use git from the command line
●​ Create a good PR

○​ Check and prove that a PR is
correct (designing the user journey
to show, showing log outputs,
making a screen recording)

○​ Respond to and address review
comments

○​ Debug CI failures

 Backend ●​ Python
●​ (sometimes) Bash
●​ (sometimes) Apache Beam

 Frontend ●​ Typescript
●​ Angular
●​ HTML
●​ CSS

Collaborator ●​ Write and get feedback on TDDs
●​ How to test a feature thoroughly

○​ For example, release QA

●​ Write, run, and fix E2E tests
●​ Write, run, and fix acceptance tests
●​ Figure out how a feature works

end-to-end

 Dev
Workflow

 ●​ Write types for Python code
●​ Read, write, and modify GitHub Actions

workflows and actions
●​ Read, write, and modify the pre-commit

and pre-submit checks

 Linter ●​ Write and debug lint checks
●​ Modify the lint check runners

 Backend
Tests

●​ Write, run, and fix backend unit tests
●​ Modify the backend test runner
●​ Modify the coverage check infrastructure

 Frontend
Tests

●​ Write, run, and fix frontend unit tests.
●​ Modify the frontend test runner
●​ Modify the coverage check infrastructure

 E2E and
Acceptance
Tests

●​ Debug CI flakes
●​ Modify the E2E test runner
●​ Modify the acceptance test runner

 Dependencies ●​ Modify how Oppia’s dependency
management systems
(dependencies.json, pip, package.json,
miscellaneous) work

●​ Add, remove, and upgrade
dependencies

○​ Vet a third-party dependency for
security and maintenance

○​ Read changelogs and check for
breaking changes

 Release ●​ Modify how releases are built and
deployed

●​ Organize release testing
●​ Serve as a release coordinator

 LACE
and CD

 Backend ●​ Fix a backend bug

Work ●​ Write, run, and fix backend unit tests
●​ Write types for Python code
●​ Fix a bug involving emails

 Beam Jobs ●​ Write your first beam job
○​ Includes writing the testing doc

●​ Design good beam jobs
○​ Includes robustness, safe and

noisy failures, and adding sufficient
logging for debugging

 Frontend
Work

●​ Fix a frontend bug
●​ Write, run, and fix frontend unit tests.
●​ Make a simple UI change
●​ Write types for Typescript code

 Server
Errors

 ●​ Figure out reproduction steps from
server error logs

●​ Fix server errors that cannot be
reproduced

 All
Teams

Project
Organizer

●​ Triage issues
●​ Keep GitHub Project board up to date
●​ Answer GitHub Discussions

Member ●​ When to merge PRs
●​ When to rerun failing CI checks
●​ Apply the revert and regression policy to

PRs that introduce regressions (including
flakes).

Codeowner ●​ How to do a good code review
○​ Review code for quality,

correctness, and security
○​ Leave clear review comments

Grouping into tasks of approximately equal size (small is roughly half of medium, and large is
roughly 50% larger than medium):

●​ Task
○​ [Large] Fix a backend bug
○​ [Medium] Write types for Python code

●​ Task
○​ [Large] Fix a frontend bug
○​ [Medium] Write, run, and fix acceptance tests

●​ Task

○​ [Large] Figure out how a feature works end-to-end.
○​ [Medium] Write types for Typescript code

●​ Task
○​ [Large] Write and debug lint checks
○​ [Medium] Read, write, and modify the pre-commit and pre-submit checks

●​ Task
○​ [Large] Fix a bug involving emails
○​ [Small] Keep GitHub Project board up to date
○​ [Small] Solve your first starter issue

●​ Task
○​ [Medium] Write your first beam job
○​ [Small] Answer GitHub Discussions
○​ [Small] Create a good PR
○​ [Small] Triage issues
○​ [Small] How to test a feature thoroughly

●​ Task
○​ [Medium] Design good beam jobs
○​ [Medium] How to do a good code review
○​ [Small] Get assigned your first issue
○​ [Small] How to access Oppia webpages

●​ Task
○​ [Large] Debug CI flakes
○​ [Medium] Figure out reproduction steps from server error logs

●​ Task
○​ [Medium] Write, run, and fix backend unit tests
○​ [Medium] Fix server errors that cannot be reproduced
○​ [Small] Write and get feedback on TDDs
○​ [Small] Getting started guide

●​ Task
○​ [Medium] Write, run, and fix frontend unit tests.
○​ [Medium] Add, remove, and upgrade dependencies
○​ [Small] Read, write, and modify GitHub Actions workflows and actions
○​ [Small] Installing Oppia
○​ [Medium] Re-organize Sidebar. A draft sidebar is in Draft Wiki Sidebars

■​ In “Guidelines for developers with write access to oppia/oppia” replace
oppia/oppia with “the Oppia repository”

■​ Fold https://github.com/oppia/oppia/wiki/Release-accessibility-checklist
into “Coding and testing for accessibility”

■​ Move https://github.com/oppia/oppia/wiki/Common-pull-request-workflows
into “Make a Pull Request” and call it “Rules for making PRs”. The
reference material from “Common pull request workflows” can move to a
new page in the dev workflow section.

■​ Fold the “Formatters” and “Bytes and string handling in Python 3” pages
into the coding style guide.

https://docs.google.com/document/d/1W6r4AW7WOP5MzJhoRKRS73IhXLj-KKo3_HDRRWHg2D4/edit
https://github.com/oppia/oppia/wiki/Release-accessibility-checklist
https://github.com/oppia/oppia/wiki/Common-pull-request-workflows

■​ Fold “Interpreting GitHubActions Results” into “If CI checks fail on your
PR”

Oppia Android
Initially written by Ben Henning.

The tree illustrates the possible roles on the Android team, where a user progresses down the
table to more advanced roles over time. The skills for each position are listed on the right. Some
skills are required, while for other priority levels, contributors will pick up skills as needed.

Role Priority Skills

New
Contributor

Required ●​ Setup
○​ Read and follow instructions in documentation.
○​ Create GitHub and Google accounts
○​ Command-line basics.
○​ Kotlin basics, from a Java development

perspective
●​ Get assigned your first issue

○​ Understand starter-level issues
○​ Ask for help
○​ Navigate the codebase
○​ Trace how data and execution flow through

code
○​ Figure out what code to change
○​ Clearly propose a solution to a starter-level

issue
●​ Solve your first starter issue

○​ Follow test-focused development (e.g. all new
and changed code should have tests)

■​ Write excellent unit tests
○​ Write clear, robust code
○​ Run code quality checks (e.g. linters, tests,

type checking), understand output, and resolve
failures

○​ Debug, including how to efficiently and
methodically identify the root cause of a bug.
How to write a debugging doc.

○​ Use git from the command line
○​ Use bazel from the command line

●​ Your first PR

○​ Check and prove that a PR is correct
(designing the user journey to show, showing
log outputs, making a screen recording)

○​ Filling out the PR template
○​ Respond to and address review comments

(particularly important)
○​ Debug CI failures

Established
Contributor

Required ●​ Basics of Android development
●​ How to use Android Studio effectively
●​ Effective debugging in Android
●​ Write, run, and fix unit tests
●​ Understanding & using Dagger (basics)

 Core Android
domain-speci
fic knowledge
to pick up on
over time

●​ Adding a new Android dependency
○​ Prereqs: Android Studio, Kotlin, Bazel

●​ Kotlin coroutines & Oppia DataProviders
○​ Prereqs: Android Basics, Kotlin

●​ Creating a new controller in Oppia Android
○​ Prereq: coroutines & DataProviders

●​ Read and translate mocks into code using
view/data binding concepts

○​ Prereqs: Android Studio, Kotlin
●​ Creating a new UI in Oppia Android (includes the

boilerplate and high-level UI dataflow, mention
livedata stuff)

○​ Prereqs: Controllers, Mocks

 Core general
software
development
knowledge to
pick up on
over time

●​ Creating a new controller and a new UI
○​ Prereqs: Android Studio, Kotlin, Navigate the

codebase
●​ How to root cause a bug (an end-to-end example)

○​ Prereq: navigating the codebase
●​ How to root source a bug (e.g. find the offending

commit)
○​ Prereq: Git

●​ Advanced testing guide: how to detect, and avoid,
flakes in Robolectric & Espresso

○​ Prereqs: writing excellent unit tests, data
providers

●​ How to communicate technical concepts
effectively (e.g. how to ask better questions and
give sufficient context with them)

●​ Writing a TDD: an end-to-end example (video &
sample TDD)

○​ Prereqs: navigating the codebase, effective
technical communication

Advanced
Contributor

 ●​ Creating a new static analysis check

Tasks of approximately equal size:

●​ Task
○​ [Large] Creating a new UI in Oppia Android (includes the boilerplate and

high-level UI dataflow, livedata, databinding)
○​ [Small] How to communicate technical concepts effectively

●​ Task
○​ [Large] Creating a new controller and a new UI
○​ [Small] How to create an effective pull request that anyone on the team can

easily understand
●​ Task

○​ [Large] How to root cause a bug (an end-to-end example)
○​ [Small] Writing a TDD: an end-to-end example (video & sample TDD)

●​ Task
○​ [Large] Advanced testing guide: how to detect, and avoid, flakes in Robolectric &

Espresso
●​ Task

○​ [Medium] Basics of Android development
○​ [Small] Get assigned your first issue

●​ Task
○​ [Medium] Effective debugging in Android
○​ [Small] Solve your first starter issue

●​ Task
○​ [Medium] Understanding & using Dagger (basics)
○​ [Small] Your first PR

●​ Task
○​ [Medium] Adding a new Android dependency
○​ [Small] How to use Android Studio effectively

●​ Task
○​ [Medium] Kotlin coroutines & Oppia DataProviders
○​ [Medium] Creating a new controller in Oppia Android

●​ Task
○​ [Medium] Read and translate mocks into code using view/data binding concepts
○​ [Medium] How to root source a bug (e.g. find the offending commit)

	SoD 2024 Skill Trees
	Oppia Web
	Oppia Android

