

Tugas Besar 1
IF3130 - Sistem Paralel dan Terdistribusi

“Rafted”

Consensus Protocol: Raft

Dipersiapkan oleh

Asisten Lab Sistem Terdistribusi

Waktu Mulai

Kamis, 8 Mei 2025, 22:00 WIB

Waktu Akhir

Kamis, 5 Juni 2025, 23.59 WIB

Changelog
5/10/2025 - Penyesuaian spesifikasi teknis demo

5/14/2025 - Klarifikasi bonus untuk log compaction

5/15/2025 - Klarifikasi contoh desain strategi untuk heartbeat

5/30/2025 - Rewording teknis demo

5/10/2025 - Penyesuaian spesifikasi teknis demo

5/13/2025 - Penyesuaian spesifikasi setup pada teknis demo

https://docs.google.com/document/d/1TsojmsiQMC2gVcIgNror7VST06aLwxfx/edit?pli=1#heading=h.b46vl1pzzcud

I.​ Latar Belakang

​
“Why can’t you sleep?”

Tik. Tik. Tik.

Jam di dindingmu menunjukkan pukul tiga. Mungkin kurang lima menit; cukup sulit untuk

melihat dengan jelas, berhubung satu-satunya sumber cahaya adalah lampu charging

laptop-mu.

Krik. Krik. Krik.

Jangkrik di jendela menyanyi dengan tenang. Kamu terbaring di kasurmu, menatap ke plafon.

Dalam beberapa jam, kamu harus kelas pagi, sebelum melakukan pertemuan dengan klien

proyek di siang hari. Kami tidak boleh melewatinya. Absenmu sudah merah. Pertemuan dengan

klien adalah syarat kelulusan. Namun... entahlah, sampai sekarang kamu tidak dapat tertidur,

meskipun semesta telah sangat mendukung.

Tung. Tung. Tung.

Bapak satpam di luar memukul tiang. Di tengah kekhawatiranmu untuk pagi nanti, pikiranmu

berkelana, mengunjungi kaleidoskop ingatan dan pikiran.

​
“All those hours, those credits, was it truly worth it?”

Hampir dua tahun yang lalu, kamu hanyalah seorang mahasiswa informatika biasa, yang

sarapannya adalah tugas besar, dan minumannya adalah ketakutan akan nilai dan lowongan

kerja. Sampai, kamu melihatnya, bersinar dan berkilauan layaknya sebuah mercusuar di

tengah lautan ujian. Nainai DX. Permainan yang telah menguras ribuan jam dan gizomu; yang

telah membumbui kehidupanmu; dan yang paling penting, yang telah menemukanmu dengan

Matsune Hiku, sang pentintesis suara dan idol virtual.

​
“You got her fired, arrested even. Was it truly justified? Also, what truly happened after?”

Hampir satu setengah tahun yang lalu, kamu hanyalah seorang sepuh pemain Nainai DX biasa,

yang makan siangnya adalah ALL PERFECT, dan minumannya adalah FULL SYNC DELUXE.

Tiba-tiba, kamu mendengarnya, bising dan mengagetkan layaknya terompet yang menandakan

datangnya bencana. Berita bahwa mesin Nainai DX akan dipindahkan. Kamu berhasil

memerankan penyelamat, sebelum konflik dengan sang manajer GAMEZONE membuatmu

melewati enam bulan tanpa ingatan apapun.

​
“Was she telling the truth?”

Hampir satu tahun yang lalu, kamu hanyalah seorang pengidap amnesia biasa, yang makan

kudapan sorenya adalah ribuan pertanyaan tentang waktumu yang hilang, dan minumanmu

adalah migraine yang tak kunjung selesai. Tiba-tiba, kamu menciumnya, lembab dan menyeruak

layaknya sebuah sebuah buku tua di tengah perpustakaan. Amplop. Isinya, instruksi untuk

bertemu sebuah "malaikat" di internet, yang kemudian mengarahkanmu untuk membuat

sebuah aplikasi, yang akhirnya membawamu untuk bertemu mereka.

“What even is all of this?”

Hampir setengah tahun yang lalu, kamu hanyalah seorang anggota biasa organisasi rahasia,

yang makan malamnya adalah debat panas tentang keberadaan noosfer manusia, dan

kudapannya adalah diskusi tentang sifat sebuah SEKAI. Tiba-tiba, kamu memegangnya, keras

dan dingin layaknya sebuah balok es. Kristal yang menandakan dirimu telah diterima sebagai

petinggi organisasi tersebut. Organisasi yang berisi orang-orang sepertimu; mereka yang

terlempar ke dalam noosfer - alam bawah sadar - umat manusia, yang dipercaya untuk

menyelamatkan dunia naratif-naratif kesayangan mereka.

Namun kini? Kamu kembali menjadi seorang mahasiswa informatika biasa, kembali bersarapan

tugas besar dan meminum ketakutan akan nilai dan lowongan kerja. Percakapan di dalam grup

organisasi kian minim, terutama setelah kamu diangkat dan dipaparkan tentang kosmologi

noosfer. Alhasil, dunia informatika kembali menjadi pikiran utamamu, di atas dunia Nainai

maupun dunia-dunia lainnya di dalam noosfer.

Memang, sepertinya kehidupan adalah sebuah siklus, layaknya siklus samsara, atau siklus

cerita tugas besar lab tertentu.

Namun, tiba-tiba...

Ting.

Kamu mendengarnya. Akrab namun asing, layaknya tawa seorang kekasih masa kecil.

Notifikasi dari sebuah aplikasi TCP over UDP. Kamu bergegas menuju laptopmu dan

membukanya.

[OWL] I suppose that is indeed our greatest hypothesis thus far.
[OWL] This anthropic noosphere is a sort of “pataverse” - that is, a
multiverse of multiverses. Universes, existing inside of multiverses,
which all exist inside of the noosphere.
[OWL] Still, we have absolutely no clue on how any of this works...

- - - NEW MESSAGES BELOW - - -

[OWL] Initiate, we hereby apologize for having left you in the dark.
[OWL] Having said that, here are our findings.
[OWL] What happened to you was due to the instability of the Nainai
multiverse - reason temporarily unknown.
[OWL] We think that there... might be a way to save Nainai. That is,
by sending you "back".
[OWL] Long story short, we have reverse-engineered untitled.mp3,
creating a program that would allow this.
[OWL] Considering that the estimated research opportunities are
enormous, we believe that this might be really worth the risk.
[OWL] If you wish to go through with this plan, please reply.
> Y/N

Kamu merenung sejenak. Kamu melihat jam di dinding. Tiga puluh lewat tiga.

Kamu yakin bahwa kamu tidak akan terbangun untuk kelas pagi. Biarkan ini jadi masalah dirimu

yang tertinggal.

> Y
[OWL] Very well. Initiate, ready to save Nainai?
[OWL] Godspeed, and good luck.

Tiba-tiba, laptopmu tidak menjadi satu-satunya sumber cahaya di kamarmu. Kristal yang

terpajang di mejamu kini bercahaya, mengisi ruanganmu dengan berbagai warna. Kamu

menarik nafas lalu menyentuhnya.

Ketika inderamu kembali, kamu terbangun di tengah sebuah stadion yang terbuat dari

marmer. Di atasmu, sebuah kristal raksasa melayang dengan anggun di bawah awan-awan yang

lebih putih bahkan dibanding marmer stadion. Di sekelilingmu, tujuh buah pintu -

masing-masing dengan warna yang berbeda - berdiri dengan kokoh, semuanya tertutup. Dan di

hadapanmu, seorang gadis pirang berdiri menyambutmu.

"Kamu pasti orang yang mereka kirimkan untuk membantuku. Selamat datang di 7sref!"

ucapnya. "Omong-omong, namaku Liz, salam kenal~"

https://www.youtube.com/watch?v=Zp50fG721ko

Kamu menganggukkan kepala.

"Aku tahu ini mungkin membingungkan, tapi singkatnya, multiverse Nainai terdiri atas enam

dunia dalam sebuah sistem terdistribusi. Stabilitas multiverse hanya dapat dijaga melalui

konsensus antar keenam dunia terkait aturan-aturan yang mendasarinya, dan sayangnya, kami

gagal melakukan hal tersebut..."

Konsensus?

"Jadi, mari kita sama-sama kembalikan konsensus tersebut! よろしくお願いします~!"

II.​ Spesifikasi Tugas
Tujuan pada tugas besar ini adalah mengimplementasikan protokol konsensus Raft sederhana.​

2.0. Background: Distributed System & Consensus Protocol
Mengapa harus ada protokol konsensus dan apa gunanya?

Seperti yang diketahui, satu komputer saja tidak cukup untuk menghandle request dalam skala
masif. There are only so many resources in a single computer. Permasalahan skalabilitas
ini akan semakin terlihat ketika ingin membuat software yang digunakan banyak client

Sebelum paradigma Distributed System dan Parallel Computing banyak digunakan, tentunya
tidak ada yang menghalangi para engineer untuk mencoba melakukan optimisasi pada sistem
dengan satu komputer. Optimisasi pada satu komputer yang memiliki I/O dan resource terbatas
menjadi semakin sulit dan basically impossible untuk melayani ever-growing client request

Approach dari Distributed System adalah menggunakan komputer yang tidak wajib
powerful tetapi dalam jumlah banyak. Approach ini memiliki kelebihan dengan mudahnya
untuk melakukan scaling (up maupun down) berdasarkan jumlah request yang sedang aktif.
Matikan saja beberapa komputer jika request sedang turun dan nyalakan kembali ketika aktif.
Selain itu, banyak komputer juga memperbolehkan setiap komputer terletak pada lokasi yang
berbeda untuk melayani client di lokasi geografi yang berbeda-beda

Memang dengan approach ini permasalahan skalabilitas akan lebih mudah, tetapi ada satu
permasalahan fundamental yang muncul dari approach ini:

Bagaimana cara antar komputer berkoordinasi untuk menjaga reliability sistem?

Disinilah Consensus Protocol bermain peran. Protokol konsensus bertugas untuk
mengkoordinasikan semua komputer yang ada pada sistem terdistribusi agar mencapai
persetujuan dari komputer-komputer yang terhubung. Hal-hal seperti siapa yang menjadi
Leader Node dan susunan transaksi yang akan dieksekusi harus disetujui oleh semua
komputer yang terhubung untuk menjaga konsistensi dan reliability sistem terdistribusi

Protokol konsensus meskipun namanya mungkin tidak terlalu “terkenal” sebagai technical
buzzwords, protokol ini menjadi tulang belakang dari sistem terdistribusi modern yang
membutuhkan resiliensi seperti Kubernetes (etcd cluster) dan dqlite yang menggunakan Raft
serta Apache Cassandra yang menggunakan Paxos. Storage & database skala masif yang
digunakan oleh aplikasi seperti Youtube juga menggunakan suatu sistem custom built-consensus
protocol dibelakangnya untuk memenuhi Eventual Consistency pada informasi seperti view
count yang sangat penting konsistensinya untuk keperluan ad revenue calculation

https://canonical.com/careers/4124053

2.1. Spesifikasi dan Requirement
Contoh dan tips implementasi akan disertakan, tetapi desain sistem dan detail
implementasi akan sepenuhnya diserahkan kepada peserta.

Berikut adalah requirement tugas besar:

1.​ Implementasi Raft harus menyediakan
a.​ Heartbeat​ ​ ​ (Node health monitoring & periodic messages)
b.​ Leader Election​ ​ (Leader node failover mechanism)
c.​ Log Replication​ ​ (Cluster action logging system)
d.​ Membership Change​ (Mekanisme untuk menambahkan dan menghapus

node pada kluster berdasarkan perintah pengguna).
2.​ Implementasikan dengan salah satu dari bahasa pemrograman berikut: TypeScript

dengan NodeJS (no JS please), Java, atau Rust.

3.​ Sebisa mungkin gunakan built-in/ standard library, tetapi library pendukung yang tidak
mengimplementasikan Raft secara umum diperbolehkan.

a.​ Protokol Remote Procedure Call (RPC) untuk komunikasi antar-node dalam kluster
dibebaskan, seperti: JSON-RPC, gRPC, tarpc, dan lain-lain.

b.​ Sertakan daftar dependencies pada file berkaitan, seperti package.json, maven/
gradle file, dan cargo.toml.

c.​ Silakan tanyakan pada sheets QnA apabila perlu klarifikasi apakah library tertentu
diperbolehkan atau tidak.

4.​ Program yang diimplementasikan di atas protokol Raft adalah distributed key-value
in-memory storage dengan layanan ping, get, set, strln, del, dan append.

a.​ Tipe data untuk value yang disimpan adalah sebuah string
b.​ Layanan ping digunakan untuk mengecek koneksi dengan server. Jika terhubung,

print “PONG”

> ping
PONG

c.​ Layanan get digunakan untuk mendapatkan sebuah nilai dari key yang diberikan.

Kembalikan string kosong jika key belum ada.

> get <nama-key>
“value”

d.​ Layanan set digunakan untuk menetapkan nilai dengan key yang diberikan. Jika
key sudah ada, overwrite nilai yang lama.

> set <nama-key> <value>

OK

e.​ Layanan strln digunakan untuk mendapatkan panjang value dari key yang
diberikan

> strln <nama-key>
<length>

f.​ Layanan del digunakan untuk menghapus entry dari key yang diberikan.
Mengembalikan nilai yang dihapus. Kembalikan string kosong jika key belum
ada.

> del <nama-key>
<value>

g.​ Layanan append digunakan untuk nilai dengan key yang diberikan. Jika key belum
ada, buat key dengan nilai string kosong sebelum melakukan append.

> append <nama-key> <value>
OK

Contoh:

> set kunci satu
OK

> append kunci dua
OK

> get kunci
“satudua”

> strln kunci
7

> del kunci
“satudua”

> get kunci
“”

5.​ Cluster server dapat menjaga Consistency dan Partition Tolerance (CP system).

6.​ Terdapat 2 interface wajib untuk server yang dapat digunakan client, semua interface
untuk client hanya dieksekusi jika request dikirimkan ke Leader. Selain itu tolak dan
redirect

a.​ execute yang akan melakukan eksekusi aplikasi (ping/get/set/strln/del/append)
b.​ request_log untuk mengembalikan log yang dimiliki Leader.​

7.​ Client dapat mengetahui sebagian atau seluruh alamat server pada kluster. Apabila client

menghubungi node yang bukan leader, node akan memberitahukan informasi node leader
sekarang. Redirection dilakukan dari sisi client (bukan node follower yang meneruskan
request client kepada server).

8.​ Semua aksi server wajib dilakukan logging ke terminal (minimal deskripsikan aksi
yang dilakukan node).

9.​ Minimum 50% Node (Rounded down) + 1 harus menjawab ACK sebelum request
client dieksekusi.

10.​Node yang mati tidak secara otomatis dikeluarkan dari cluster.

11.​Server diinisiasi dengan fixed list of servers. Membership change (add member, remove
member) dilakukan setelah kluster berjalan.

12.​Implementasi client dibebaskan. UI bisa berupa CLI, web interface, etc.

a.​ UI Bisa berupa CLI, web interface, etc.

b.​ Protokol komunikasi client dengan server dibebaskan. Bisa berupa REST, RPC,
atau pun yang lainnya.

Good Luck, Have Fun ;)

III.​ Tips Pengerjaan
Seperti yang disebutkan pada spesifikasi, attack strategy dan implementation details akan
diserahkan kepada peserta. Bagian ini hanya akan memberikan panduan sederhana strategi
berdasarkan contoh implementasi. Boleh digunakan dan dimodifikasi sesuai kebutuhan, boleh
juga untuk menggunakan approach sendiri

3.0. Overview - Raft Protocol
Sebelum memulai pengerjaan tugas besar ini, ada baiknya untuk memahami gambaran sistem
yang akan diimplementasikan. Github Pages “The Raft Consensus Algorithm”, yang dituliskan
oleh penulis asli artikel Raft, mencantumkan visualisasi protokol Raft dan sejumlah referensi
tambahan. Selain itu, halaman berikut (http://thesecretlivesofdata.com/raft/) berisi high-level
overview dan visualisasi singkat untuk protokol Raft

Raft Visualization - Heartbeat

Berikut adalah beberapa terminologi yang digunakan pada kedua referensi di atas.

●​ Consensus: kesepakatan setiap node terhadap sebuah nilai; setiap node menyimpan nilai
dalam log masing-masing.

●​ Log Replication: replikasi log; proses sinkronisasi isi log yang dilakukan melalui Leader.
Perubahan log dilakukan dengan mekanisme penambahan entry. Penambahan entry
diikuti commit oleh setiap node jika entry dari Leader sudah diterima oleh Follower.

●​ Partition: sesuatu yang membagi jaringan menjadi beberapa bagian (misal, kegagalan
jaringan atau node).

●​ Node: endpoint atau perangkat dalam sebuah jaringan terdistribusi; sebuah node memiliki
pangkat atau status berupa Leader, Follower atau Candidate.

●​ Leader: pemimpin dalam jaringan node.

https://raft.github.io/
http://thesecretlivesofdata.com/raft/

○​ Pengubahan log (berupa penambahan entry) dilakukan melalui Leader dengan
cara replikasi log kepada Follower.

●​ Follower: pengikut Leader.
○​ Follower mengikuti proses replikasi log yang dilakukan oleh Leader.
○​ Follower berubah menjadi Candidate apabila tidak ditemukan sebuah Leader (tidak

menerima Heartbeat).
●​ Candidate: calon Leader.

○​ Candidate menginisiasi proses Election untuk menentukan Leader baru.
○​ Candidate meminta persetujuan mayoritas (vote) dari node lain.
○​ Candidate yang memenangkan Election Term menjadi Leader.

●​ Heartbeat: pesan periodik yang dikirimkan Leader untuk menyatakan keberadaannya.
●​ Heartbeat Timeout: rentang waktu yang ditunggu oleh Follower untuk menerima heartbeat

dari Leader.
○​ Apabila Follower tidak menerima heartbeat dalam interval waktu tersebut, posisi

Leader diasumsikan kosong. Follower akan menunggu election timeout sebelum
menjadi Candidate dan memulai election term.

Raft Visualization - Normal Election & Split Vote Election

●​ Election, Election Term, & Votes
○​ Election: proses pengangkatan Candidate untuk mengisi posisi Leader.
○​ Election Term: penomoran terhadap jumlah proses election yang telah dilakukan.

■​ Sebuah election term berlangsung selama Leader mampu mengirimkan
heartbeat kepada setiap Follower.

■​ Election term baru diberlakukan ketika terdapat Follower yang berubah
menjadi Candidate.

○​ Votes: pesan persetujuan yang dikirimkan oleh node terhadap sebuah Candidate.
●​ Election Timeout: rentang waktu yang ditunggu sebelum memulai sebuah election term.

○​ Setiap node memiliki interval yang diacak dalam rentang nilai tertentu. Interval
acak dan majority vote berperan penting dalam menangani kasus split vote.

3.1. Desain Sistem & Strategi
Seperti membangun software dari nol, langkah awal adalah membuat desain sistem. Lakukan
brainstorming terhadap kebutuhan sistem. Beberapa contoh pertanyaan untuk memulai:

●​ Apa metode komunikasi yang akan digunakan (e.g. TCP, UDP)?

●​ Apa kelebihan dan kekurangan metode tersebut?

●​ Apakah akan menggunakan I/O blocking atau non-blocking?

●​ Konsistensi seperti apa yang digunakan? (e.g. read committed, read uncommitted)

●​ Bagaimana bentuk API untuk komunikasi antar-node dan antara client-server?

●​ Format pesan apa yang digunakan? (Binary, JSON, atau plain string?)

●​ Fitur-fitur apa saja yang perlu diimplementasikan? Contoh:

1.​ Heartbeat
2.​ Membership Change
3.​ Log Synchronization
4.​ Election Handling

●​ Apakah akan menggunakan multithreading atau multiprocessing?

Reminder: Pada titik ini, semestinya sudah mengimplementasikan berbagai macam sistem:
IF1210, IF2121, IF2110, IF2211, IF2230, IF3110, IF3130, dan seterusnya. Semestinya sudah
waktunya untuk step-back dan berpindah fokus dari implementation detail (a.k.a. coding) ke
high-level system design dan problem solving. Kesalahan di tahap desain sistem jauh lebih
mahal (ruinously expensive) daripada kesalahan implementasi biasa seperti bug. Maka, desain
sistem yang matang akan sangat menentukan kesuksesan implementasi.

3.2. Contoh Desain & Strategi
Berikut adalah contoh strategi yang dapat digunakan untuk pengimplementasian tugas besar
berikut.

1.​ Komunikasi antar node dengan menggunakan XMLRPC
2.​ Pesan akan dienkode dalam bentuk string JSON agar mudah dibaca
3.​ Pengimplementasian algoritma Raft akan dilakukan dalam sebuah kelas utama bernama

RaftNode yang berisi fungsionalitas
a.​ Heartbeat
b.​ Leader Election
c.​ Log Replication
d.​ Task Execution
e.​ Membership Change

4.​ Identifier dari masing-masing RaftNode adalah pasangan unik IP dan port
5.​ Operasi yang dilakukan di dalam masing-masing node dilakukan secara multithreading

agar operasi yang dilakukan lebih konsisten
6.​ Ketika menjalankan suatu node dengan argumen contact address kosong, maka node

tersebut akan secara otomatis menjadi Leader. Jika tidak kosong, maka node tersebut
akan mencoba untuk meng-apply membership ke contact address tersebut

7.​ Pengiriman heatbeat dilakukan secara berkala dengan sebuah jangka waktu konstan
tertentu.

8.​ Seluruh client request dan membership change yang masuk ke node bukan leader
akan mengembalikan error dan address leader; kemudian client tersebut akan
mengirim ulang request tersebut ke address leader yang diterima sebelumnya

9.​ Proses perubahan sebuah node dari cluster dilakukan secara manual (fungsionalitas tidak
diimplementasikan di dalam kelas RaftNode, namun dilakukan dengan mematikan
program secara langsung) dan proses ini berjalan secara graceful (tidak akan merusak
cluster secara keseluruhan)

10.​Roadmap implementasi:
a.​ Perancangan sistem cluster dan metode komunikasi yang akan digunakan
b.​ Pendefinisian RPC yang dapat dilakukan oleh masing-masing node
c.​ Pengimplementasian kerangka kelas RaftNode
d.​ Pengimplementasian mekanisme Heartbeat secara berkala
e.​ Pengimplementasian mekanisme Leader Election
f.​ Pengimplementasian mekanisme Log Replication
g.​ Pengimplementasian mekanisme Task Execution
h.​ Pengimplementasian mekanisme Membership Change
i.​ Pengimplementasian unit test dan proses testing

3.3. Implementasi & Contoh
Bagian ini adalah contoh dari beberapa implementasi Raft yang dapat digunakan. Lanjutkan
bagian ini sesuai dengan rencana yang telah dibuat. Jika merasa desain dan kode yang
disediakan terlalu redundan atau tidak efisien, bagian ini tidak wajib diikuti dan diperbolehkan
untuk membuat semuanya dari scratch.

Contoh Struktur Folder

Contoh struktur folder

Contoh Diagram Kelas

Contoh diagram kelas

Contoh Kode

Catatan : Kode hanya ditujukan untuk ilustrasi, kode mungkin bekerja dan mungkin tidak
Perbaiki dan sesuaikan dengan keperluan masing-masing jika menggunakan contoh

address.py

class Address(dict):
 def __init__(self, ip: str, port: int):
 dict.__init__(self, ip=ip, port=port)
 self.ip = ip
 self.port = port

 def __str__(self):
 return f"{self.ip}:{self.port}"

 def __iter__(self):
 return iter((self.ip, self.port))

 def __eq__(self, other):
 return self.ip == other.ip and self.port == other.port

 def __ne__(self, other):
 return self.ip != other.ip or self.port != other.port

server.py

from address import Address
from raft import RaftNode
from xmlrpc.server import SimpleXMLRPCServer
from app import KVStore

def start_serving(addr: Address, contact_node_addr: Address):
 print(f"Starting Raft Server at {addr.ip}:{addr.port}")
 with SimpleXMLRPCServer((addr.ip, addr.port)) as server:
 server.register_introspection_functions()
 server.register_instance(RaftNode(KVStore(), addr, contact_node_addr))
 server.serve_forever()

if __name__ == "__main__":
 if len(sys.argv) < 3:
 print("Usage: server.py ip port [contact_ip] [contact_port]")
 exit()

 contact_addr = None
 if len(sys.argv) == 5:
 contact_addr = Address(sys.argv[3], int(sys.argv[4]))
 server_addr = Address(sys.argv[1], int(sys.argv[2]))

 start_serving(server_addr, contact_addr)

raft.py

import asyncio
from threading import Thread
from xmlrpc.client import ServerProxy
from typing import Any, List
from enum import Enum
from address import Address

class RaftNode:
 HEARTBEAT_INTERVAL = 1
 ELECTION_TIMEOUT_MIN = 2
 ELECTION_TIMEOUT_MAX = 3
 RPC_TIMEOUT = 0.5

 class NodeType(Enum):
 LEADER = 1
 CANDIDATE = 2
 FOLLOWER = 3

 def __init__(self, application : Any, addr: Address, contact_addr: Address = None):
 socket.setdefaulttimeout(RaftNode.RPC_TIMEOUT)
 self.address: Address = addr
 self.type: RaftNode.NodeType = RaftNode.NodeType.FOLLOWER
 self.log: List[str, str] = []
 self.app: Any = application
 self.election_term: int = 0
 self.cluster_addr_list: List[Address] = []
 self.cluster_leader_addr: Address = None
 if contact_addr is None:
 self.cluster_addr_list.append(self.address)
 self.__initialize_as_leader()
 else:
 self.__try_to_apply_membership(contact_addr)

 # Internal Raft Node methods
 def __print_log(self, text: str):
 print(f"[{self.address}] [{time.strftime('%H:%M:%S')}] {text}")

 def __initialize_as_leader(self):
 self.__print_log("Initialize as leader node...")
 self.cluster_leader_addr = self.address
 self.type = RaftNode.NodeType.LEADER
 request = {
 "cluster_leader_addr": self.address

 }
 # TODO : Inform to all node this is new leader
 self.heartbeat_thread =
Thread(target=asyncio.run,args=[self.__leader_heartbeat()])
 self.heartbeat_thread.start()

 async def __leader_heartbeat(self):
 # TODO : Send periodic heartbeat
 while True:
 self.__print_log("[Leader] Sending heartbeat...")
 pass
 await asyncio.sleep(RaftNode.HEARTBEAT_INTERVAL)

 def __try_to_apply_membership(self, contact_addr: Address):
 redirected_addr = contact_addr
 response = {
 "status": "redirected",
 "address": {
 "ip": contact_addr.ip,
 "port": contact_addr.port,
 }
 }
 while response["status"] != "success":
 redirected_addr = Address(response["address"]["ip"],
response["address"]["port"])
 response = self.__send_request(self.address, "apply_membership",
redirected_addr)
 self.log = response["log"]
 self.cluster_addr_list = response["cluster_addr_list"]
 self.cluster_leader_addr = redirected_addr

 def __send_request(self, request: Any, rpc_name: str, addr: Address) -> "json":
 # Warning : This method is blocking
 node = ServerProxy(f"http://{addr.ip}:{addr.port}")
 json_request = json.dumps(request)
 rpc_function = getattr(node, rpc_name)
 response = json.loads(rpc_function(json_request))
 self.__print_log(response)
 return response

 # Inter-node RPCs
 def heartbeat(self, json_request: str) -> "json":
 # TODO : Implement heartbeat
 response = {
 "heartbeat_response": "ack",
 "address": self.address,
 }
 return json.dumps(response)

 # Client RPCs
 def execute(self, json_request: str) -> "json":
 request = json.loads(json_request)

 # TODO : Implement execute
 return json.dumps(request)

IV.​ Penilaian & Bonus
Sama seperti tugas kecil dan penilaian Laboratorium Sister sebelumnya, program akan dinilai
secara kelompok. Untuk nilai demo akan dinilai secara individu.

●​ Server dan client dapat berkomunikasi ​ ​ ​ (10)

●​ Fitur pada protokol Raft berjalan dengan baik ​ ​ (50)
■​ Heartbeat​ ​ ​ ​ (10)
■​ Leader Election​ ​ ​ (10)
■​ Log Replication​ ​ ​ (15)
■​ Membership Change​ ​ (15)

●​ Demo​ ​ ​ ​ ​ ​ ​ ​ (40)
●​ Bonus​ ​ ​ ​ ​ ​ ​ ​ (max. 20)

Berikut adalah bonus (yang bersifat opsional) tersedia pada tugas besar ini. Nilai dari bonus
maksimal 20.

●​ Unit Test​ ​ ​ ​ ​ (10)
Implementasikan unit test untuk memastikan semua komponen berfungsi dengan baik.

●​ Transaction​ ​ ​ ​ ​ (10)
Implementasikan fitur untuk mengeksekusi beberapa perintah sebagai suatu transaksi.

●​ Log Compaction​ ​ ​ ​ (10)
Implementasikan fitur log compaction pada protokol Raft. Untuk log compaction, log harus
dalam bentuk persistent storage.

V.​ Pengumpulan dan Deliverables
1.​ Pengerjaan tugas dilakukan dengan membuat sebuah repository pada Assignment di

GitHub Classroom “Lab Sister 21”. Pastikan bahwa project visibility kelompok private
selama pengerjaan

2.​ Pengerjaan tugas dilakukan berkelompok yang sama dengan kelompok tugas kecil.
Berikut adalah sheet daftar kelompok IF3230 - Daftar Kelompok.

3.​ Apabila ada pertanyaan lebih lanjut, jangan lupa untuk selalu kunjungi sheet QnA

4.​ Catatan penting: Jika diketahui terdapat kode yang sama dengan repository di internet,
maka akan dianggap melakukan kecurangan. Alasan menggunakan fitur kode
autocomplete seperti vibe coding yang melakukan copas akan diabaikan.

5.​ Segala kecurangan baik sengaja dan tidak disengaja akan ditindaklanjuti oleh pihak
asisten, yang akan berakibat sanksi akademik ke setiap pihak yang terlibat

6.​ Deadline pengerjaan tugas ini adalah Kamis, 5 Juni 2025, 23.59 WIB, semua commit
harus dilakukan sebelum jam tersebut

7.​ Pengumpulan dilakukan dengan melakukan release pada repository Github sebelum
deadline. Revisi pengumpulan dapat dilakukan dengan membuat release baru.

https://classroom.github.com/a/MWt-H53x
https://classroom.github.com/a/MWt-H53x
https://docs.google.com/spreadsheets/d/1BFbrb6wJ3x9Tkiua4vCoh10M57HWag367ux1RzBui2M/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1FceAZy0w57dwUN7yuCpkYDA7g-mdmCDJBa1_ddvULn0/edit?gid=1145473600#gid=1145473600

VI.​ Tata Cara Demo
Demo akan dilakukan secara luring dengan jadwal dibagikan menyusul menjelang deadline.
Ketentuan pelaksanaan demo antara lain:

Setup
0.​ Setup tidak boleh menggunakan localhost Gunakanlah beberapa komputer dalam

jaringan lokal atau virtual network dengan menggunakan vm (docker terhitung
sebagai virtual network jadi boleh). Satu perangkat bisa menjadi beberapa node
dengan menggunakan bridge.

1.​ Lakukan git status dan git log pada repository

2.​ Jelaskan secara singkat sistem dan overview fungsi & method yang diimplementasikan

3.​ Gunakan tc command berikut (ala IF3130 - Jaringan Komputer)

tc qdisc add dev lo root netem delay 100ms 50ms reorder 8% corrupt 5% duplicate
2% 5% loss 5%

Apabila command tc tidak dapat dieksekusi pada vm atau docker, lakukan setup (langkah
0.) pada localhost dengan konfigurasi clumsy (langkah 4.)

4.​ Jika ingin menggunakan Windows untuk demo, subtitusi command tc dengan
github.com/clumsy. Gunakan konfigurasi berikut

5.​ Jika diperlukan, diperbolehkan juga untuk mengubah konfigurasi ketika menjalankan
environment demo. Pastikan untuk memperlihatkan pada awal hanya mengubah
konfigurasi, bukan kode utama

https://github.com/jagt/clumsy/releases/tag/0.3rc4

6.​ Jika ada behavior yang unexpected karena network, jelaskan juga sembari memperbaiki
jika diperlukan

7.​ Gunakan 4 node berbeda untuk server. Client berasal dari luar keempat node tersebut.

Demo Eksekusi Program (40)
Penilaian akan mempertimbangkan keberhasilan eksekusi program, progress pengerjaan, dan
penjelasan dari implementasi.

Heartbeat (10)
1.​ Tampilkan Heartbeat pada setiap server (Tunjukkan pula node mana yang menjadi

Leader)

2.​ Untuk memastikan koneksi sudah terhubung, kirimkan client request ping ke salah satu
node

Log Replication​(10)
1.​ Kirimkan client request berikut ke Leader hingga tereksekusi

a.​ set("1", "A")
b.​ append("1", "BC")
c.​ set("2", "SI")
d.​ append("2", "S")
e.​ get(“1”)

2.​ Kirimkan client request berikut ke node bukan Leader hingga tereksekusi
a.​ get(“1”)
b.​ get(“2”)

3.​ Kirimkan client request berikut dari dua node ke Leader secara hampir bersamaan
hingga tereksekusi
Node 1:

a.​ set("ruby-chan", "choco-minto")
b.​ append("ruby-chan", "-yori-mo-anata")

Node 2:

a.​ set("ayumu-chan", "strawberry-flavor")
b.​ append("ayumu-chan", "-yori-mo-anata")

4.​ Kirimkan client request berikut ke node bukan Leader yang berbeda hingga tereksekusi
a.​ get(“ruby-chan”)
b.​ get(“ayumu-chan”)

Leader Election​(10)
1.​ Setelah dieksekusi, matikan (dengan CTRL+C misalnya) Leader

2.​ Tunggu dan perlihatkan proses Leader Election pada 3 node sisa

3.​ Kirimkan client request berikut ke node Leader yang baru
a.​ strlen("1")
b.​ strlen("2")
c.​ del("1")
d.​ append("2", "TE")
e.​ append("2", "R")

4.​ Nyalakan kembali node yang mati sebelumnya menggunakan address yang sama
dan mendaftarkan diri ke Leader yang baru terpilih

5.​ Kirimkan client request berikut ke Leader hingga tereksekusi
a.​ set("3", "")
b.​ append("3", "UwU")
c.​ append(“4”, “Onii-Chan”)
d.​ append(“4”, “Daisuki”)

6.​ Kirimkan client request berikut ke node yang baru saja hidup hingga tereksekusi
e.​ get("2")
f.​ get("3")
g.​ get(“4”)

7.​ Kirim request berikut ke node Leader dan tampilkan ke layar
request_log()

Membership Change​ (10)
1.​ Tambah satu node baru sebagai member cluster. Tunjukkan proses membership change

dan replikasi log ke node yang baru ditambahkan, tunggu sampai proses tersebut selesai.

2.​ Kirim request berikut ke node yang baru ditambahkan dan tampilkan ke layar
request_log(). Setelah mendapatkan alamat leader, kirim request_log()ke leader.

3.​ Lakukan dua hal berikut secara bersamaan:
a.​ Hapus salah satu node node dan tambahkan node yang lain sebagai member

cluster.
b.​ Kirim request berikut ke Leader

set("crocodilo", “bombardino”) → set("tung-tung-tung", “sahur”)

*Maksudnya di sini adalah mengirim request tanpa menunggu node baru untuk selesai
sinkronisasi log

4.​ Kirim request berikut ke node yang baru ditambahkan dan tampilkan ke layar

request_log(). Setelah mendapatkan alamat leader, kirim request_log() ke leader.

Closing

Jangan lupa untuk menggunakan command berikut untuk revert konfigurasi qdisc pada tc

tc qdisc del dev lo root netem delay 100ms 50ms reorder 8% corrupt 5% duplicate
2% 5% loss 5%

VII.​ Referensi
1.​ https://raft.github.io/​ ​ ​ ​ ​ - Raft Paper - Github Pages
2.​ https://raft.github.io/raft.pdf​ ​ ​ ​ - Original Raft Paper
3.​ http://thesecretlivesofdata.com/raft/​ ​ ​ - Raft visualization
4.​ https://www.wikiwand.com/en/Raft_(algorithm)​ - Raft Wikipedia
5.​ https://www.cl.cam.ac.uk/teaching/2122/ConcDisSys/dist-sys-notes.pdf
6.​ Membership Change: https://github.com/hashicorp/raft/blob/main/membership.md

https://raft.github.io/
https://raft.github.io/raft.pdf
http://thesecretlivesofdata.com/raft/
https://www.wikiwand.com/en/Raft_(algorithm)
https://www.cl.cam.ac.uk/teaching/2122/ConcDisSys/dist-sys-notes.pdf
https://github.com/hashicorp/raft/blob/main/membership.md

~ The name Raft implies the existence of a greater (water vessel) ~​
Johann

~ ~

yellow

~ Terakhiran? ~

Awe

~ 空を越えて さあ舞い上がれ ~​
Duke

~ last kah ~

Willy

~ “Where’s SISTER 2, William? You were supposed to drop him off an hour ago. 😡” ~

yujin

~ “Patrick, aku kira Raft bukan kata yang benar.”

“AYOLAHH kau tau? Aku Raft kau Raft dia Paxos… Aku Raft Raft Rafting Raftou​
Raftologi? Ingin belajar Raft? Itu tingkat pertama, Spongebob!” ~

Toper

~ it would be embarrassing when we meet again ~
barkod

https://www.youtube.com/watch?v=EOAVjC2X4v0

	Tugas Besar 1
	IF3130 - Sistem Paralel dan Terdistribusi
	“Rafted”
	Consensus Protocol: Raft
	Changelog
	I.​Latar Belakang
	II.​Spesifikasi Tugas
	2.0. Background: Distributed System & Consensus Protocol
	2.1. Spesifikasi dan Requirement

	III.​Tips Pengerjaan
	3.0. Overview - Raft Protocol
	3.1. Desain Sistem & Strategi
	3.2. Contoh Desain & Strategi
	3.3. Implementasi & Contoh

	IV.​Penilaian & Bonus
	V.​Pengumpulan dan Deliverables
	VI.​Tata Cara Demo
	Setup
	Demo Eksekusi Program (40)
	Heartbeat (10)
	Log Replication​(10)
	Leader Election​(10)
	Membership Change​(10)

	Closing

	VII.​Referensi

