Simple Interest

The formula for simple interest is $I = C \times r \times n$, where C is the capital [or principal] r is the interest rate n is the number of interest periods I is the interest.

Calculate the simple interest on a loan of: \$6500 at a rate of 7% pa over 3 years and 5 months.

Find the amount of money borrowed if after seven years the simple interest charged is \$9000 at a rate of 7.5% per annum.

Interpolation vs. Extrapolation

x_1	$\bigcirc y_1$	
6	17	
9	15	
15	8	

range:

The three data points given in the table have been plotted. Since they are *nearly* linear, <u>a linear model is a reasonable model</u> for this data.

The linear model <u>is:</u> y = -1.02x + 23.6 domain:

interpolation:

extrapolation

Problem 1:

In a chemistry experiment, a liquid is heated and the temperature is recorded at different times. Some results are shown in the table.

1	ime (X minutes)	4	6	8	10
1	emperature (y°C)	130.0	209.8	290.3	369.2

- a Plot a graph of this data on your GDC.
- **b** Choose an appropriate model. Justify your decision.
- c Determine a reasonable domain and range for your model.
- d Find an equation for the model. Plot it on your graph.
- e Comment on your model.
- f Use your model to estimate:
 - i the temperature of the water 4.5 minutes after the experiment started
 - ii the temperature of the water 20 minutes after the experiment started.
- g Comment on the predictions made in part f.

Problem 2:

Lucy is researching shipping companies for her business to use. She ships between 200 and 500 kg of products each week. Ted's Transport charges a flat rate of \$15.99 per kg plus a flat fee. She knows that her friend used Ted's Transport and paid about \$2800 to ship 170 kg of belongings.

- Pose a real-world problem: What question(s) might you ask here?
- 2 Develop a model:
 - a What are the independent and dependent variables in this situation?
 - b Explain why a linear model is appropriate for this situation.
 - c Find an equation for your linear model in gradient-intercept form.
- 3 Test the model:

The following week, Lucy makes her first shipment of 310 kg and pays \$5031.90. Is this consistent with your model? If not, revise the model, giving reasons for how you choose to revise it.

4 Apply your model:

The following week, Lucy budgets \$4500 for shipping. What is the maximum weight she can ship, to the nearest kilogram? (When applying a model, we **predict** the value of one variable given a known value for the other. It also allows us to make **decisions**, such as setting budgets.)

- 5 Reflect on your model:
 - a What is C(0), and what is its meaning in the context of the problem?
 - b What is a reasonable practical domain and associated range if Lucy uses the model to predict weekly shipping costs?
- 6 Conceptual Why is modelling useful? What does a model allow us to do?