
Design a Machine Learning system to check if @someone at Twitter should be
allowed or not.

1.​ Text - nlp
2.​ Action: tweet block people from seeing this tweet (abuse and spam

content); Labels tag(abuse) scratch; report do not have old solution
3.​ Social network
4.​ Scope binary data abuse not abuse
5.​ Quick solution first iteration complex limited resources: 1-2 annotators

Objective: machinel learning system to detect abuse tweet to prevent people from
seeing it. Customer retention

-​ Data collection
Reports: 10k reports regarding abuse @ negative class

1.​ Reports + annotators (true negative class 10k + 50% 10k postive
class) => 20k => traditional ml such logisitc regression/ svm/
tree-based model (simple scalable interpreting; probabilities) => 6
months => 600 k

2.​ Reports + crowdsourcing + annotators => true positive class true
negative class

-​ Feature Selection:
User profile based features: has this account been reported in the past?
Number of followers; number of followings; number of favorites; account
age at Twitter; previous retweet to tweet ratio; number of comments …..
Tweet content based features: (text) the number of words, number of digits;
number of special characters/illegal characters; the content of
Tweet(normalization: lowercase; remove special characters; digit => word
=> word embedding)
Cross tweet- user features: tweet the user has retweeted
Feature Selection on non-text features tree models to generate feature
importance; stepwise to select important features
1000 most common word in tweet “This is a good movie” [9,34,55,199,40]
[0,0,0,1,0] 500 oov buckets

-​ Algorithm: logistic regression
Cross entropy loss function
Macro F1 Score top 20 models
Precision of the negative class to select the best model
Training and testing 70% 30%
category

-​ 600k data points labeled
CNN/ RNN/ TRANSFORMER
CNN: kernel kernel size of 2 140 280
RNN: cannot be run in paralell sequence; long dependency: LSTM/ GRU
Transformer: no sequential; postional embedding + attention long
dependency
Load a pretraining BERT + cls pad tokens => tokens from the bert model =>
concatenation layer to add non-text features => Relu layers => sigmoid
function output layer

Model Evaluation:

-​ Offline Metrics: Macro F1 score; Precision of negative class
-​ Online Metrics: Customer retention rate; report rate; average session time

…

Model Deployment:
 Model: optimization (quantization); parllel on GPU; Multi-stage models
 Batching/Online learning: find “global” solution/ better solution;
 Streaming update our model complex
 Test: data test to detect data drift; A/B online metrics

===
Feedback notes:

1.​ 总分总答法；先说最好的model if we have time/interested, dive deep
2.​ Session中间问下direction dive deep into 哪个部分？
3.​ Data collection + algorithm + feature selection

1.​ High level diagram
2.​ Online process(e.g. Feature store) offline process
3.​ Loop process
4.​ Single Failure Point in Machine Learning feature leaky
5.​ Backup Plan
6.​ Privacy
7.​ Centric/ devices

