Design a Machine Learning system to check if @someone at Twitter should be
allowed or not.

3.
4.
5.

. Text - nlp
. Action: tweet block people from seeing this tweet (abuse and spam

content); Labels tag(abuse) scratch; report do not have old solution
Social network

Scope binary data abuse not abuse

Quick solution first iteration complex limited resources: 1-2 annotators

Objective: machinel learning system to detect abuse tweet to prevent people from
seeing it. Customer retention

Data collection
Reports: 10k reports regarding abuse @ negative class
1. Reports + annotators (true negative class 10k + 50% 10k postive
class) => 20k => traditional ml such logisitc regression/ svm/
tree-based model (simple scalable interpreting; probabilities) => 6
months => 600 k
2. Reports + crowdsourcing + annotators => true positive class true

negative class

Feature Selection:

User profile based features: has this account been reported in the past?

Number of followers; number of followings; number of favorites; account

age at Twitter; previous retweet to tweet ratio; number of comments

Tweet content based features: (text) the number of words, number of digits;

number of special characters/illegal characters; the content of

Tweet(normalization: lowercase; remove special characters; digit => word

=> word embedding)

Cross tweet- user features: tweet the user has retweeted

Feature Selection on non-text features tree models to generate feature

importance; stepwise to select important features

1000 most common word in tweet “This is a good movie” [9,34,55,199,40]

[0,0,0,1,0] 500 oov buckets

Algorithm: logistic regression

Cross entropy loss function

Macro F1 Score top 20 models

Precision of the negative class to select the best model

Training and testing 70% 30%

category

- 600k data points labeled
CNN/ RNN/ TRANSFORMER
CNN: kernel kernel size of 2 140 280
RNN: cannot be run in paralell sequence; long dependency: LSTM/ GRU
Transformer: no sequential; postional embedding + attention long
dependency
Load a pretraining BERT + cls pad tokens => tokens from the bert model =>
concatenation layer to add non-text features => Relu layers => sigmoid
function output layer

Model Evaluation:
- Offline Metrics: Macro F1 score; Precision of negative class
- Online Metrics: Customer retention rate; report rate; average session time

Model Deployment:
Model: optimization (quantization); parllel on GPU; Multi-stage models
Batching/Online learning: find “global” solution/ better solution;
Streaming update our model complex
Test: data test to detect data drift; A/B online metrics

Feedback notes:

1. B9 EEE; £ EIFHImodel if we have timelinterested, dive deep
2. Sessiondd 5] Fdirection dive deep into B~ &84% ?
Data collection + algorithm + feature selection

ol

High level diagram

Online process(e.g. Feature store) offline process
Loop process

Single Failure Point in Machine Learning feature leaky
Backup Plan

Privacy

Centric/ devices

Noahkwh=

