
Number ____

1. On the axes below, plot relevant data to make a straight line. Label both axes with both a description and units. Draw a steepest and shallowest best-fit line. (See quiz 92 for a description of the situation.)

2. Find the slope of the best-fit lines. Use two far-separated points on each best fit line that are NOT data points; circle those points on the graph. Show all calculations *including* substitution with units. Then state a final slope with uncertainty (and, of course, proper units).

3.	Derive a relevant equation relating d and t . Annotate your calculation with a description of your approach.
4.	Explain the physical meaning of the slope of the line with reference to the relevant equation.
5.	Calculate the force applied by the rocket from the slope of your graph. Compare to the force used in the simulation.
	used in the Simulation.