

GSoC 2025 Proposal

VulnerableCode: On-demand
live evaluation of packages
and Integration with VulnTotal
and its browser extension
[Large (350 hours)]
March 2025

Personal Information
Name: Michael Ehab Mikhail

GitHub Username: michaelehab

Email: michaelehab16@gmail.com

Phone: +201210107756

Major: Computer Engineering

College: Cairo University

Country: Egypt

Time Zone: Cairo (GMT+2)

1

https://github.com/aboutcode-org/aboutcode/wiki/GSOC-2025-Project-Ideas#vulnerablecode-on-demand-live-evaluation-of-packages-category-a
https://github.com/aboutcode-org/aboutcode/wiki/GSOC-2025-Project-Ideas#vulnerablecode-on-demand-live-evaluation-of-packages-category-a
https://github.com/aboutcode-org/aboutcode/wiki/GSOC-2025-Project-Ideas#vulnerablecode-on-demand-live-evaluation-of-packages-category-a
https://github.com/aboutcode-org/aboutcode/wiki/GSOC-2025-Project-Ideas#vulnerablecode-on-demand-live-evaluation-of-packages-category-a
https://github.com/aboutcode-org/aboutcode/wiki/GSOC-2025-Project-Ideas#vulnerablecode-on-demand-live-evaluation-of-packages-category-a
https://github.com/michaelehab
mailto:michaelehab16@gmail.com

LinkedIn: https://www.linkedin.com/in/michaelehab16

Gitter username: @michaelehab:gitter.im

Internships
●​ Software Engineering Intern at Dell Technologies (Oct 2023 - Present)

○​ Actively contributing to Project Alvarium, a trust fabric framework for secure data

transmission.

○​ Spearheading a reinforcement learning project with a focus on in-depth research,

paper review, and implementation.

●​ Software Engineering Intern at Microsoft (Jul 2023 - Oct 2023)

○​ Designed and implemented a solution for generating content using Large

Language Models (LLMs).

○​ Integrated the LLM prompts with internal tools to automate the generation

process.

○​ Ensured data quality by implementing and automating the junk detection

process.

●​ Software Engineering Intern at Brightskies inc (Feb 2023 - Jul 2023)

○​ Worked on designing, developing, and running a project that solved our client’s

challenge using Java, Spring Boot, Hibernate, JUnit, Maven, Gitlab, and Jira.

○​ Proactively participated in weekly team meetings and conducted reports on the

project’s progress.

●​ Back End Software Engineering Intern at Banque Misr (Aug 2022 - Sep 2022)

○​ Achieved 1st place out of 7 cross-functional intern teams by creating a REST API

that powered Android, iOS, and Web apps using Java, Spring Boot, Hibernate, and

PostgreSQL database.

2

https://www.linkedin.com/in/michaelehab16
https://www.dell.com/
https://www.microsoft.com/
https://brightskiesinc.com/
https://www.banquemisr.com/

Extracurricular Activities
●​ Software Engineer at Cairo University Eco Racing Team (Aug 2021 - Jul 2022)

○​ Increased workshop utilization compared to last year’s numbers by creating a

REST API that served the racing team mobile app using Python, Django, and

PostgreSQL.

●​ Web Development Instructor at GDSC Cairo University (Aug 2021 - Jul 2022)

○​ Coached more than 20 computer science students to start coding and learn the

basics of Web development by organizing weekly sessions to teach them HTML,

CSS, and JavaScript.

Previous Open Source Contribution

Contributions to AboutCode organization

I’ve been a contributor to AboutCode VulnerableCode/Vulntotal since March 2023.

I also created AboutCode Vulntotal Browser Extension as part of Google Summer of Code 2024.

Detailed documentation, including PRs, can be found here:

https://aboutcode.readthedocs.io/en/latest/archive/gsoc/reports/2024/vulntotal_extension_mi

chael.html

Example Merged PRs:

●​ https://github.com/aboutcode-org/vulnerablecode/pull/1524

●​ https://github.com/aboutcode-org/vulnerablecode/pull/1157

●​ https://github.com/aboutcode-org/vulntotal-extension/pull/5

●​ https://github.com/aboutcode-org/vulntotal-extension/pull/6

●​ https://github.com/aboutcode-org/vulntotal-extension/pull/9

Contributions outside AboutCode organization

I am an active contributor to Project Alvarium, an LF Edge project.

3

https://www.facebook.com/ShellEcoMarathonCUT/
https://aboutcode.readthedocs.io/en/latest/archive/gsoc/reports/2024/vulntotal_extension_michael.html
https://aboutcode.readthedocs.io/en/latest/archive/gsoc/reports/2024/vulntotal_extension_michael.html
https://github.com/aboutcode-org/vulnerablecode/pull/1524
https://github.com/aboutcode-org/vulnerablecode/pull/1157
https://github.com/aboutcode-org/vulntotal-extension/pull/5
https://github.com/aboutcode-org/vulntotal-extension/pull/6
https://github.com/aboutcode-org/vulntotal-extension/pull/9
https://alvarium.org/

Example Merged PRs:

●​ https://github.com/project-alvarium/alvarium-sdk-go/pull/68

●​ https://github.com/project-alvarium/scoring-apps-go/pull/16

●​ https://github.com/project-alvarium/alvarium-pipelines/pull/7

●​ https://github.com/project-alvarium/alvarium-sdk-go/pull/66

●​ https://github.com/project-alvarium/scoring-apps-go/pull/14

●​ https://github.com/project-alvarium/alvarium-sdk-java/pull/135

●​ https://github.com/project-alvarium/scoring-apps-go/pull/12

●​ https://github.com/project-alvarium/alvarium-sdk-java/pull/133

●​ https://github.com/project-alvarium/alvarium-sdk-go/pull/54

●​ https://github.com/project-alvarium/scoring-apps-go/pull/10

●​ https://github.com/project-alvarium/alvarium-sdk-go/pull/50

●​ https://github.com/project-alvarium/scoring-apps-go/pull/8

I participated in GSSoC 2022 and participated in Awesome Chrome Extensions, CalcHub, and

LearnCPP.

I built 2 Chrome extensions as a part of my contribution to Awesome Chrome Extensions, they

are Pomodoro Timer with nice UI and VAT Calculator.

Example Merged PRs:

●​ https://github.com/ridsuteri/Awesome-Chrome-Extensions/pull/213

●​ https://github.com/0xvashishth/CalcHub/pull/137

●​ https://github.com/ridsuteri/Awesome-Chrome-Extensions/pull/82

●​ https://github.com/0xvashishth/CalcHub/pull/109

●​ https://github.com/Lakhankumawat/LearnCPP/pull/331

Do you plan to have any other commitments during GSoC that
may affect your work? Any vacations/holidays? Will you be
available full-time to work on your project?
My final exams will end on June 1st, which is before the coding period starts, so I don’t have any

serious commitments that may affect my work. I plan to work full-time on my project.

4

https://github.com/project-alvarium/alvarium-sdk-go/pull/68
https://github.com/project-alvarium/scoring-apps-go/pull/16
https://github.com/project-alvarium/alvarium-pipelines/pull/7
https://github.com/project-alvarium/alvarium-sdk-go/pull/66
https://github.com/project-alvarium/scoring-apps-go/pull/14
https://github.com/project-alvarium/alvarium-sdk-java/pull/135
https://github.com/project-alvarium/scoring-apps-go/pull/12
https://github.com/project-alvarium/alvarium-sdk-java/pull/133
https://github.com/project-alvarium/alvarium-sdk-go/pull/54
https://github.com/project-alvarium/scoring-apps-go/pull/10
https://github.com/project-alvarium/alvarium-sdk-go/pull/50
https://github.com/project-alvarium/scoring-apps-go/pull/8
https://github.com/ridsuteri/Awesome-Chrome-Extensions
https://github.com/vasu-1/CalcHub
https://github.com/Lakhankumawat/LearnCPP
https://github.com/ridsuteri/Awesome-Chrome-Extensions/tree/main/Pomodoro_Timer
https://github.com/ridsuteri/Awesome-Chrome-Extensions/tree/main/VAT_Calculator
https://github.com/ridsuteri/Awesome-Chrome-Extensions/pull/213
https://github.com/0xvashishth/CalcHub/pull/137
https://github.com/ridsuteri/Awesome-Chrome-Extensions/pull/82
https://github.com/0xvashishth/CalcHub/pull/109
https://github.com/Lakhankumawat/LearnCPP/pull/331

Detailed Description of the Project Idea
VulnerableCode currently processes vulnerability data in bulk by running importers that fetch,

structure, and store advisories for all available packages at once.

This approach is practical for large-scale vulnerability tracking, but it lacks the flexibility to

retrieve and import advisories dynamically for a single package using its PURL (PackageURL).

This project aims to introduce an API endpoint that enables on-demand importing of

vulnerability advisories for a specific Package URL.

By supporting dynamic, real-time querying, this feature will enhance efficiency and usability,

particularly for use cases that require targeted vulnerability lookups.

This allows us to improve VulnerableCode/VulnTotal package which uses VulnerableCode as a

data source, so it would support running VulnerableCode locally and given that VulnTotal is

package-first, it presents a perfect opportunity to utilize the new API endpoint in

VulnerableCode in an effective way and help VulnTotal users to have their local vulnerability

database based on the packages they search with.

We can also build upon this and allow VulnTotal browser extension users to have their

vulnerability database with minimum setup, The extension would utilize the addition to

VulnTotal package and be able to call the new API endpoint in VulnerableCode.

This all results in a better integration between VulnerableCode and VulnTotal, and easier access

to vulnerability data for packages.

So, to summarize, this project consists of 3 main parts that build on top of each others, first one

is adding an API endpoint that imports vulnerability advisories for a single package given its

PackageURL, then use this API endpoint to integrate VulnTotal python package with

VulnerableCode, and lastly, integrate the updated packages and tools with the browser

extension.

I discussed the project idea and approach during a couple of VulnerableCode community

meetings with the maintainers to make sure it is applicable and needed since it bridges a gap

5

that helps user build local advisories db using VulnerableCode which use the advantage

VulnTotal has which is accessing proprietary data sources (Since it is allowed in their licences).

Duplicate Code between VulnTotal and VulnerableCode

We can reduce duplicate code by providing shared pieces of code for data source management

for PURL that both VulnTotal and VulnerableCode could use now that VulnerableCode will

support the package-first approach through the live evaluation feature

But it is important to note that based on one of the discussions we made it clear that there

might sill be some differences, for example, in the GitLab data source, we use a VCS approach in

VulnerableCode and in a previous PR I modified the GitLab data source in VulnTotal to use an

API approach, both methods are valid but in VulnerableCode’s current state, it is way more

efficient to use a VCS approach for batch processing, and on the other hand, VulnTotal is way

more optimized using an API approach since it serves its use case. So, it is essential to maintain

each unique aspect while reducing duplicate code and maintaining full functionality.

See VulnerableCode Gitlab Pipeline Importer and VulnTotal Gitlab Datasource for reference.

6

https://github.com/aboutcode-org/vulnerablecode/blob/main/vulnerabilities/pipelines/gitlab_importer.py
https://github.com/aboutcode-org/vulnerablecode/blob/main/vulntotal/datasources/gitlab.py

If needed, the new API endpoint could be disabled by default for license reasons and needs

manual interaction to be enabled by users on their local versions (Which is an accepted case)

The new API endpoint would allow users to gradually build their advisories db

Example: Consuming the new API endpoint through the VulnTotal browser extension

7

Detailed Scenario of interaction

8

So the project would solve the duplicate code issue between VulnerableCode and VulnTotal,

introduce a new API call in VulnerableCode for live package evaluation, use the new API

endpoint in VulnTotal by adding a local VulnerableCode option, and make things even more

easier and more accessible by making this possible within the browser extension I developed

during last year’s Google Summer of Code for AboutCode.

9

Demo of the Solution for the first part of the project
In this demo I focused on showing the feasibility of using VulnerableCode in a package-first way.

Individual importers will need their specific approach depending on their API and specific

issues/discussions, so for the sake of this demo, I will focus on Gitlab since it is a pipeline

importer and does not have direct package-first API.

By the end of the demo, I aim to show the test case proposed in AboutCode GSoC 2025 Project

Idea, which is “A good test case would be to start with a completely empty database. Then we

call the new API endpoint for one PURL, and the vulnerability data is fetched, imported/stored on

the fly, and the API results are returned live to the caller. After that API call, the database should

now have vulnerability data for that one PURL.”

Starting with an empty database

So, I started by making a fresh clone of VulnerableCode, starting with an empty database.

As we can see, when I search using a PackageURL of “pkg:pypi/jinja2” I get 0 results because

the database is empty.

10

https://github.com/aboutcode-org/aboutcode/wiki/GSOC-2025-Project-Ideas#vulnerablecode-on-demand-live-evaluation-of-packages-category-a
https://github.com/aboutcode-org/aboutcode/wiki/GSOC-2025-Project-Ideas#vulnerablecode-on-demand-live-evaluation-of-packages-category-a

After calling the API endpoint, we will do the same search, and our goal is to find packages for

this PackageURL and confirm that the database only includes advisories for that exact

PackageURL.

Implementing the new API endpoint (Passing the PURL to the pipeline importers
because our target is the “Gitlab” importer)
class ImporterRunSerializer(serializers.Serializer):​
 importer_name = serializers.CharField(​
 help_text="Name of the importer to run"​
)​
 purl_string = serializers.CharField(​
 help_text="PackageURL string to filter the importer run",​
)​
​
class ImporterRunViewSet(viewsets.ViewSet):​
 ​
 serializer_class = ImporterRunSerializer​
​
 @extend_schema(​
 request=ImporterRunSerializer,​
 responses={​
 202: {"description": "Importer started successfully"},​
 400: {"description": "Invalid request"},​
 500: {"description": "Internal server error"}​
 }​
)​
 @action(​
 detail=False,​
 methods=['post'],​
 url_path='run-importer'​
)​
 def run_importer(self, request):​
 serializer = ImporterRunSerializer(data=request.data)​
 if not serializer.is_valid():​
 return Response(serializer.errors,

status=status.HTTP_400_BAD_REQUEST)​
​
 importer_name = serializer.validated_data.get('importer_name')​
 purl_string = serializer.validated_data.get('purl_string')​
 purl = PackageURL.from_string(purl_string) if purl_string else None​

11

​
 try:​
 importer = IMPORTERS_REGISTRY[importer_name]​
 except KeyError:​
 return Response(​
 {'error': f'Importer {importer_name} not found.'},​
 status=status.HTTP_400_BAD_REQUEST​
)​
​
 # Handle pipeline importers​
 if issubclass(importer, VulnerableCodeBaseImporterPipeline):​
 pipeline_instance = importer(purl) # Pass the PURL to the

importer​
 status_code, error = pipeline_instance.execute()​
 if status_code != 0:​
 return Response(​
 {'error': f'Importer {importer_name} failed: {error}'},​
 status=status.HTTP_500_INTERNAL_SERVER_ERROR​
)​
 return Response(​
 {'message': f'Importer {importer_name} executed

successfully.'},​
 status=status.HTTP_202_ACCEPTED​
)​
 ​
 # Handle regular importers​
 try:​
 ImportRunner(importer).run()​
 return Response(​
 {'message': f'Importer {importer_name} executed

successfully.'},​
 status=status.HTTP_202_ACCEPTED​
)​
 except Exception as e:​
 error_msg = f"Error running importer {importer_name}: {str(e)}"​
​
 return Response(​
 {'error': error_msg},​
 status=status.HTTP_500_INTERNAL_SERVER_ERROR​
)

12

Register the new API endpoint

api_v2_router.register(​
 "importer-runs",​
 ImporterRunViewSet,​
 basename="importer-runs"​
)

Modify the Gitlab importer to use the PURL if it exists

Modify the constructor to take the PURL

def __init__(self, purl: Optional[PackageURL] = None):​
 super().__init__()​
 self.purl = purl

Modify the collect_advisories method to use the PURL
advisory = parse_gitlab_advisory(​
 file=file_path,​
 base_path=base_path,​
 gitlab_scheme_by_purl_type=self.gitlab_scheme_by_purl_type,​
 purl_type_by_gitlab_scheme=self.purl_type_by_gitlab_scheme,​
 logger=self.log,​
)​
​
 if advisory and (self.purl is None or any(pkg.package.name ==

self.purl.name for pkg in advisory.affected_packages)):​
 yield advisory

Send a request to start the Gitlab importer with the “pkg:pypi/jinja2” PackageURL

13

If we check VulnerableCode logs, we will see that it imported only 10 new advisories

14

Search using the PURL again

If we check the VulnerableCode database for the advisories, we will find that we only have the

10 advisories for that specific PackageURL:

As we can see, that concludes our demo for the first part of the project, which is the API call for

VulnerableCode.

Again, other importers will need to be modified in a more specific way in case they already

support package-first fetching like PyPi, the vulnerabilities may be available when querying the

main API.

15

Project Plan

Deliverables

●​ VulnerableCode should support live package evaluation: Importers need to be

modified so they can support fetching advisories for a single given PackageURL.

●​ VulnTotal should support local VulnerableCode usage: VulnTotal python package needs

to have an option to use local VulnerableCode as a datasource when querying for a

PackageURL.

●​ VulnTotal browser extension should use the updated VulnTotal extension: the browser

extension needs to get updated to reflect the package update, this allows easier way to

interact with the new API added in VulnerableCode.

Project Timeline

Phase 1: VulnerableCode new API endpoint (4 months)

June 2 - October 2

●​ Reduce duplicate code between VulnerableCode and VulnTotal, especially with the need

to modify the VulnerableCode importers to support live package evaluation.

●​ Modify VulnerableCode importers (both regular and pipeline importers) to allow the

usage of a specific PURL.

●​ Some importers might already support ways to fetch using a package, while others will

need to use batch fetching with proper filtering and optimizations.

●​ Deliverable: VulnerableCode supporting on demand live evaluation of packages.

Phase 2: Update VulnTotal Python Tool (2 Weeks)

October 3 - October 17

16

●​ VulnTotal should depend on the shared code with VulnerableCode so we have less

duplicate code.

●​ VulnTotal should have a new local VulnerableCode datasource alongside the public

VulnerableCode version, and the local version should utilize the new API to help users

gradually fill their local advisories database.

●​ Deliverable: VulnTotal should support a local VulnerableCode datasource and use the

new API for the on demand live evaluation of packages feature.

Phase 3: Update VulnTotal Browser Extension (2 Weeks)

October 18 - October 25

●​ The VulnTotal browser extension is the easiest way to interact with the new

VulnerableCode API endpoint, so it should be modified to help users use the new feature

with minimal setup (setting up the api port of their local VulnerableCode instance).

●​ Deliverable: VulnTotal browser extension should be updated to use the updated

VulnTotal python tool and integrate seamlessly with local VulnerableCode.

Phase 4: Publish Extension to stores and buffer time

October 26 - November 10

●​ Modify the extension metadata as needed to meet stores criteria to publish the

extension.

●​ Deliverable: The updated browser extension will be published successfully to available

stores (to be determined based on accounts availability).

Existing Solutions
●​ There are no existing solutions as VulnerableCode currently does not support live

package evaluation.

17

	VulnerableCode: On-demand live evaluation of packages and Integration with VulnTotal and its browser extension [Large (350 hours)]
	Personal Information
	Internships
	Extracurricular Activities
	Previous Open Source Contribution
	Contributions to AboutCode organization
	Contributions outside AboutCode organization

	Do you plan to have any other commitments during GSoC that may affect your work? Any vacations/holidays? Will you be available full-time to work on your project?
	Detailed Description of the Project Idea
	Duplicate Code between VulnTotal and VulnerableCode
	The new API endpoint would allow users to gradually build their advisories db
	Example: Consuming the new API endpoint through the VulnTotal browser extension
	
	Detailed Scenario of interaction
	

	Demo of the Solution for the first part of the project
	Starting with an empty database
	Implementing the new API endpoint (Passing the PURL to the pipeline importers because our target is the “Gitlab” importer)
	Register the new API endpoint
	Modify the Gitlab importer to use the PURL if it exists
	Modify the constructor to take the PURL
	Modify the collect_advisories method to use the PURL

	Send a request to start the Gitlab importer with the “pkg:pypi/jinja2” PackageURL
	
	Search using the PURL again

	Project Plan
	Project Timeline
	Phase 1: VulnerableCode new API endpoint (4 months)
	June 2 - October 2

	Phase 2: Update VulnTotal Python Tool (2 Weeks)
	October 3 - October 17

	Phase 3: Update VulnTotal Browser Extension (2 Weeks)
	October 18 - October 25

	Phase 4: Publish Extension to stores and buffer time
	October 26 - November 10

	Existing Solutions

