
Versioned Runtime APIs under
Platforms & Toolchains

Authors: schmitt@bazel.build
Reviewers:

● trybka@google.com (LGTM)
● hlopko@google.com (LGTM)
● jcater@google.com (LGTM)
● cushon@google.com (LGTM)
● cpovirk@google.com (LGTM)
● kaipi@google.com (LGTM)
● djwhang@google.com (LGTM)

Created: 2019-07-09

Please read Bazel Code of Conduct before commenting.

Overview
Most runtime libraries are versioned with a guarantee of forward API compatibility but no
backwards compatibility. Examples include the Java Runtime Environment (JRE), the iOS
SDK, Android SDK, libc and many more.1 2

When compiling an executable that depends on such a library one has to provide the
"minimum library version" to support, for example by passing that version's headers or
passing an argument to a tool such as a compiler. The resulting binary will run on a system
that makes that version or newer of the library available.

Platforms describe the runtime environment for binaries and as such are a logical place to
contain information about the available runtime libraries and their versions. Toolchains
describe a set of tools and/or libraries used by Bazel rules to execute actions such as

2 Yes, Python does not fall into this except schema due to Python 3 breaking backwards
compatibility. The proposal below still covers its use case.

1 Note that while runtime libraries are often distributed with a set of language tooling (e.g. compiler,
linker) the toolings' versions do not adhere to the same system or compatibility scheme as runtime
libraries. Therefore a language's tools and runtime library should be modeled in separate toolchains
in Bazel or at least independently: E.g. A tool-based toolchain that has access to a range of runtime
headers for its language (not just the version distributed with the current version of the tools).

https://www.contributor-covenant.org/version/1/4/code-of-conduct
https://docs.bazel.build/platforms.html
https://docs.bazel.build/toolchains.html

compiling a source file and are thus need to be aware of the desired minimum library
versions to correctly configure action inputs and command lines.

This document explores several approaches on how to model runtime library versioning
and minimum versions used during a build in platforms and toolchains while taking into
account situations like creating multiple inter-dependent binaries (with different desired
minimum versions) in a single build.

Background & Use Cases
Examples of where minimum runtime library versions are used and how they are modeled in
Bazel today:

iOS
(Also other operating systems provided by Apple)

For iOS the compiler enforces that any APIs used are available in the requested minimum
OS version (the runtime libraries are bundled and versioned with the OS). Thus the desired
minimum version must be passed to each compile action and is also embedded in the
compiled artifact for consistency checking at link time. iOS tooling also uses the minimum
version while processing/compiling resources.

On iOS a deployable artifact (.ipa) may contain multiple binaries each of which may have a
different minimum version. For example an app may be using minimum version X but come
with an extension only supported at API version X+2. The extension would have its own
binary using minimum version X+2 and only be used by iOS in case the current runtime
supports it.

Bazel models this by offering aminimum_os attribute on the binary level for deployables
targeting Apple OSs. This attribute is propagated via a configuration transition to all
dependencies of a binary target to ensure a consistent minimum version.

Android
For Android there are several different approaches, further complicated by the fact that
java and native dependencies are treated differently. Most of these mechanisms rely on
flags passed to the build invocation. Because of this, targets in a single Bazel invocation
must all use the same minimum version.

(Java) android_library
One way to set the minimum version of the Android SDK is to pass a specific version to
--android_sdk. Code using newer APIs will not compile as a result. More typically however
builds pass the newest available SDK version to --android_sdk and include appcompat as a

library that will backport newer APIs to old runtimes (using runtime checks). In effect this
sets the minimum version to however far back appcompat can support the used APIs.

Separate from providing interfaces Android binary and library rules can also specify a
minimum SDK version in their manifest. This number is largely ignored, however with newer
manifest merging if a binary has a lower minimum version than a library it depends on an
error is raised. There are plans for more API usage warnings and errors based on the
manifest.

Native dependencies
Android applications can have native dependencies which depend on (libc) headers in the
NDK. The NDK itself is versioned by revisions (r17, r18, r19), and each revision supports a
different range of Android API levels. While the NDK is bundled with the SDK Bazel's current
mechanisms for handling versioning of the two in a single build are independent.

Unlike java code, native code does not have an appcompat library and passes the
minimum version to the compiler as part of the target triple. No newer APIs can be used.
The minimum desired NDK version can be derived from --android_grte_top or a locally
installed NDK. There is no check of this version against the application manifest's minimum
version or the included java code.

Design
To ensure consistency across ecosystems in Bazel, recommend one way to communicate
the desired version of libraries, via build settings. Allow platforms to define the installed
runtime library version and check each binary's min version against it.

Requirements
● Minimum version can be set per binary, for its dependency configured target graph.
● Any target in that graph must be able to read the min version (or toolchains it uses

have to).
● A platform can advertise which runtime library versions are installed on it so that the

requested version can be checked against the installed version.

Proposal
The recommended approach is similar to what Apple rules do today, with the additional
check against platforms.

● For each type of runtime library, define a build setting that can propagate its min
version. Typically the build setting will be of type int but could also be a string.

● On each type of binary rule define an attribute for each type of runtime library that
may need a min version specified. This attribute will set the corresponding build
setting for the binary target's dependency graph.

https://docs.bazel.build/skylark/config.html#defining-build-settings
https://docs.bazel.build/skylark/lib/config.html#int

○ Alternately (if there doesn't seem to be any need to ever set the build setting
to different values within the same build for different binaries) it can be set
on the command line and no attribute is needed.

● select() and toolchain resolution can operate on these build settings.
● Toolchains and rule implementation can read the build setting value to parametrize

actions.
● Optional but recommended: Define a constraint setting with a list of values that

corresponds to the build setting. This allows platforms to declare installed runtime
versions. Toolchains can then raise an error if the target platform's runtime version
constraint value does not fulfill the set min version.

Note: In some cases a single binary rule may need to propagate more than one min version,
such as android_binary with the SDK, NDK and java versions.

Example
example/java_rules/flags.bzl

IntProvider = provider(fields = ['value'])

def _impl(ctx):

return IntProvider(value = ctx.build_setting_value)

int_flag = rule(

implementation = _impl,

Only allow setting via transition

build_setting = config.int(flag = False)

)

MAX_KNOWN_JRE = 8 # This value has to be manually updated

def in_min_jre_range(min, max):

"""Returns a tuple of minimum JRE constraint settings in range.

Suitable for use in selects.with_or().

Args:

min: Minimum JRE version as integer, inclusive.

max: Maximum JRE version as integer, exclusive.

"""

target_format = "//example_java_rules:jre_min_version_%s"

return tuple([target_format.format(x) for x in range(min, max)])

def at_least_min_jre(min):

"""Returns a tuple of minimum JRE constraint settings in range.

Suitable for use in selects.with_or().

Args:

min: Minimum JRE version as integer, inclusive.

"""

return in_jre_range(min, MAX_KNOWN_JRE+1)

example/java_rules/BUILD

load("//example/java_rules:flags.bzl", "int_flag", "MAX_KNOWN_JRE")

int_flag(

name = "jre_min_version",

build_setting_default = "5"

)

constraint_setting(

name = "jre_version",

default_constraint_value = ":jre_version_8"

)

Create a constraint value and min JRE config setting for each known

JRE version.

[

constraint_value(

name = "jre_version_" + jre_version,

constraint_setting = ":jre_version"

)

config_setting(

name = "jre_min_version_" + jre_version,

flag_values = {

":jre_min_version": jre_version,

}

)

for jre_version in range(5, MAX_KNOWN_JRE)]

example/platforms/BUILD

platform(

name = "old_machine",

constraint_values = [

"@platforms//cpu:x86_64",

"@platforms//os:linux",

"//example/java_rules:jre_version_5"

]

)

example/java_rules/rules.bzl

load("//example/java_rules:flags.bzl", "IntProvider")

def _lib_impl(ctx):

jre_min_version = ctx.attrs._jre_min_version[IntProvider].value

use jre_min_version in action creation

java_lib = rule(

implementation = _lib_impl,

attrs = {

"_jre_version": attr.label(

default=Label("//example/java_rules:jre_min_version"))

}

)

def _min_jre_version_transition_impl(settings, attr):

return {

"//example/java_rules:jre_min_version": attr.min_jre_version

}

_min_jre_version_transition = transition(

implementation = _min_jre_version_transition_impl,

inputs = [],

outputs = ["//example/java_rules:jre_min_version"],

)

def _bin_impl(ctx):

Note: Target platform access not implemented yet.

platform_jre =

ctx.target_platform[Label("//example/java_rules:jre_version")]

min_jre = ctx.attrs.min_jre_version

if platform_jre and Int(platform_jre[-1:]) < min_jre:

fail("Min JRE for this binary is larger than target JRE")

...

java_bin = rule(

implementation = _bin_impl,

attrs = {

"min_jre_version": attr.int()

"deps": attr.label_list(cfg=_min_jre_version_transition)

}

)

//example/project/BUILD

load("//example/java_rules:flags.bzl", "in_jre_range", "at_least_jre")

java_lib(

name = "lib",

srcs = ["A.java"]

)

java_lib(

name = "conditional_lib",

srcs = selects.with_or({

in_min_jre_range(5,8): ["B_Old.java"]

at_least_min_jre(8): ["B_New.java"]

})

)

java_bin(

name = "old_bin",

jre_min_version = 5,

deps = [

":lib",

":conditional_lib",

],

)

java_bin(

name = "new_bin",

deps = [

":lib",

":conditional_lib",

],

)

When running the below command, //example/project:lib will be built

twice, once with jre_min_version=5, once with jre_min_version=8.

:conditional_lib will be built twice as well, once with B_Old.java and

once with B_New.java

bazel build //example/project:new_bin //example/project:old_bin

This command should fail because the passed platform does not support

the requested minimum JRE version. Note that the above command

succeeds because the default platform doesn't specify any JRE version.

bazel build --platforms=//example/platforms:old_machine \

//example/project:new_bin

Ranges
As illustrated in the above example ranges can occasionally be useful when dealing with
versioned runtimes, such as when constructing select() statements based on the min

version or when registering toolchains (and indicating which should be used at which min
version level).

It is recommended that each runtime library type defines its own range functions to
correctly capture its semantics of version comparison.

Hermetic Runtimes
Some platforms may not have any version of a runtime library installed, or the wrong one, or
a binary maintainer wants to package the runtime with the binary to make it independent of
the target platform. This can be supported in a variety of ways, mostly in the toolchain
definition:

● A toolchain implementation that always bundles the runtime with the binary. This
implementation could be registered as default or passed as --extra_toolchains to
the build.

● A toolchain implementation can conditionally bundle the runtime with the binary if
the target platform has no registered version of the runtime. Such behavior could be
implemented via a select() on the platform's values that chooses the correct
toolchain implementation.

● A toolchain implementation can conditionally bundle the runtime with the binary if
the target platform only supports an incompatible version of the runtime, for
example a version lower than the min version passed.

Library Owners
Library owners (such as for :conditional_lib in the example above) will want to make
sure in an automated fashion that their code continues working under different min version
flag values.

Testing
The below example introduces a new rule type flag_value_test_suite that internally split
transitions for each passed value of each flag (exploring the full set of combinations if
there's more than one flag) and executes the given tests in each.

java_test(

name = "conditional_lib_test",

srcs = ["Test.java"]

)

flag_value_test_suite(

name = "conditional_lib_jre_tests",

tests = [":conditional_lib_test"],

flags = {

"//example/java_rules:jre_min_version": ["7", "8"]

}

)

Warning
Library owners may not control all dependencies on their targets or the minimum versions
people may use their library with. If they want to raise a warning when their library is not
compatible with the current build they can employ a select statement with error branch:

java_lib(

name = "foo",

srcs = selects.with_or(

input_dict = { at_least_min_jre(8): ["Foo.java"] },

no_match_error = "requires at least Java 8"

),

)

Implementation
Most of the proposed approach works with today's technology. To support min version
checking against the target platform however we need to add the ability to read a given
constraint setting's value(s) from the current target platform.

The logic for creating, selecting and verifying minimum versions and target versions will
likely be similar across many rule sets and can be bundled in a common location (for
example skylib).

flag_value_test_suite does not exist yet but is needed for many use cases now that
configurations are proliferating in builds. It may require some additional attributes such as
the configuration fragments of passed flags when it is implemented.

Alternatives Considered
Don't change anything
Semantic considerations aside (if platforms represent a binary's runtime environment then
installed runtime libraries really should belong in there) we could leave each ecosystem to
handle minimum versions as they (already) see fit.

Pros

● No additional infrastructure complexity
● Allows for alignment with the toolchain's ecosystem best practices outside Bazel

Cons

https://github.com/bazelbuild/bazel-skylib

● Inconsistencies and confusion across different ecosystems used in Bazel (especially
if they have common dependencies like native code)

● Reduced/no benefits from Bazel infrastructure like selects and toolchain selection

Synthetic Platforms
Similar to the build setting proposal in the design section, however min versions are
propagated in the platform (via configuration values) rather than build settings.

● Runtime versions are available as constraint values
● Binary target refers to min version constraint value, this is then merged into set

target platform(s)
○ implies same deployable could contain multiple binaries each targeting a

different platform (which is already true for multi-arch deployables)
● Selects, toolchains operate on platform constraint values

○ probably need some kind of range function (toolchain supports version X
through Y) which implies ordering on constraint values

● Toolchain resolution (or toolchain directly) reads runtime version from platform

Cons

● Makes platforms more difficult to understand.
● Cannot check values against platform installed runtime.

