
append vs cons vs list
This post isn't meant to be comprehensive. Ask questions in lab or as a followup here if you're confused.

One of its major flaws is that it doesn't cover box and pointers. LEARN BOX AND POINTERS.

Here is a beautiful web based Scheme interpreter that will draw box and pointer diagrams for you. Run
through the examples below with this thing:

http://xuanji.appspot.com/js-scheme-stk/index.html

In order to understand these three procedures, you first have to understand a little about Pairs and Lists.

Pairs are data structures that have two slots. You can put different stuff in these slots, like numbers or
words or sentences or booleans--pretty much anything. You make a pair using cons.

STk> (cons 'foo 'bar)​
(foo . bar)​
​
STk> (cons 1 'ring)​
(1 . ring)​
​
STk> (cons (+ 1 2 3) (member? 3 '(the 3 stooges)))​
(6 . #t)

In order to get stuff from a pair that you have made, you use car and cdr. car gets the thing in the first slot.
cdr gets the thing in the second slot.

STk> (define foo (cons 'x 'y))​
foo​
​
STk> foo​
(x . y)​
​
STk> (car foo)​
x​
​
STk> (cdr foo)​
y

That was straight forward. Now for the trippy part:

You can put pairs inside of pairs:

STk> (define foo (cons (cons 3 4) 5))​
foo​
​
STk> foo​
((3 . 4) . 5)​
​
STk> (car foo)​
(3 . 4)​
​
STk> (car (car foo))​
3​
​
STk> (caar foo) ; functionally equivalent as above.​
3​
​
STk> (cdr foo)​
5​
​
STk> (cdr (car foo))​
4​
​
STk> (cdar foo) ; functionally equivalent as above.​
4

There's a certain style of pair nesting that is especially useful--Lists.

Each list has these properties:

1.​ Every list is a pair or the empty list (denoted by '() or nil).
2.​ The car of a nonempty list is some item.
3.​ The cdr of a nonempty list must be another list.

STk> (cons 1 (cons 2 (cons 3 '()))) ; list of numbers​
(1 2 3)​
​
STk> (define stooges (cons 'larry (cons 'curly (cons 'moe nil))))​
stooges​
​
STk> stooges​

(larry curly moe)​
​
STk> (car stooges)​
larry​
​
STk> (cdr stooges) ; Calling cdr on a non-empty list gives you another list!​
(curly moe)​
​
STk> (cadr stooges)​
curly​
​
STk> (cdar stooges) ; Why does this break?​
*** Error:​
 cdar: bad list: (moe larry curly)​
Current eval stack:​
__________________​
 0 (cdar stooges)​
​
STk> (define not-a-list (cons 'foo (cons 'bar 'baz))) ; This is not a list.​
not-a-list​
​
STk> not-a-list ; What property does this break?

Notice how Scheme knew that we were making lists. Before we had parens and periods which organized
our items. Scheme now recongizes that we're making a list and does away with the periods and some of
the parens.

If you stare a bit at the list rules above, you can notice we used a recursive definition to define lists.
Recursion... on data!

.

Let's talk about list. List takes a bunch of stuff and makes a list out of them. The stuff can be anything.
Words, numbers, pairs, other lists. list doesn't care.

STk> (list 'foo 'bar' 'baz) ; Lists takes anything and makes a list out of it.​
(foo bar baz)​
​
STk> (list 'foo ((lambda (x) (+ x 4)) 8) #f (cons 1 (cons 3 4)) (cons 1 (cons 2

nil)) (list 1 2 3)) ; ANYTHING ​
(foo 12 #f (1 3 . 4) (1 2) (1 2 3))​
​

STk> (list 'x 'y 'z)​
(x y z)​
​
STk> '(x y z) ; Sometimes you can get away with using quote to make literal lists.

Yes, sentences are secretly lists.​
(x y z)

Now we can talk about append:

STk> (append '(a b c) '(d e f) '(g h i)) ; Append takes in lists and appends them

together.​
(a b c d e f g h i)​
​
STk> (append 'foo '(1 2 3)) ; foo is not a list. Stuff will break.​
*** Error:​
 append: argument is not a list: foo​
Current eval stack:​
__________________​
 0 (append (quote foo) (quote (1 2 3)))

You know that cons makes a pair. You also know that you can make a list out of pairs. You can abuse
cons for your own maniacal purposes.

STk> (cons 'joe stooges) ; Put stuff at the beginning of a list!​
(joe larry curly moe)

The following only applies to the STk interpreter.

STk> (append '(1 2 3) 'foo) ; Wait... what?​
(1 2 3 . foo)​
​
STk> (append '(1 2 3) (cons 4 5)) ; The plot thickens!​
(1 2 3 4 . 5)​
​
STk> (append stooges 'shemp) ; You should really figure out why this works.​
(larry curly moe . shemp)

To summarize:

append takes in lists and outputs a big list.

cons takes in things and makes a pair out of them. However, we know that lists are made of pairs, so we
can throw together a list if we use cons a certain way

list takes in things and makes a list out of those things, regardless of what they are.

Illustrated summery: http://csillustrated.berkeley.edu/PDFs/posters/list-constructors-1-poster.pdf

Let me know if you have any questions.

Andrew

	append vs cons vs list

