append vs cons vs list
This post isn't meant to be comprehensive. Ask tions in | r as a followup here if T

One of its major flaws is that it doesn't cover box and pointers. LEARN BOX AND POINTERS.

Here is a beautiful web based Scheme interpreter that will draw box and pointer diagrams for you. Run
through the examples below with this thing:

http://xuanji.appspot.com/js-scheme-stk/index.html
In order to understand these three procedures, you first have to understand a little about Pairs and Lists.

Pairs are data structures that have two slots. You can put different stuff in these slots, like numbers or
words or sentences or booleans--pretty much anything. You make a pair using cons.

STk> (cons 'foo 'bar)
(foo . bar)

STk> (cons 1 'ring)
(1 . ring)

STk> (cons (+ 1 2 3) (member? 3 '(the 3 stooges)))
(6 . #t)

In order to get stuff from a pair that you have made, you use car and cdr. car gets the thing in the first slot.
cdr gets the thing in the second slot.

STk> (define foo (cons 'x 'y))

foo
STk> foo
(x . y)

STk> (car foo)
X

STk> (cdr foo)
y

That was straight forward. Now for the trippy part:

You can put pairs inside of pairs:

STk> (define foo (cons (cons 3 4) 5))

foo
STk> foo
((3.4) .5)

STk> (car foo)
(3 . 4)

STk> (car (car foo))

STk> (caar foo) ; functionally equivalent as above.

STk> (cdr foo)

STk> (cdr (car foo))

STk> (cdar foo) ; functionally equivalent as above.

There's a certain style of pair nesting that is especially useful--Lists.
Each list has these properties:

1. Every listis a pair or the empty list (denoted by ‘() or nil).
2. The car of a nonempty list is some item.
3. The cdr of a nonempty list must be another list.

STk> (cons 1 (cons 2 (cons 3 '()))) ; list of numbers
(12 3)

STk> (define stooges (cons 'larry (cons 'curly (cons 'moe nil))))
stooges

STk> stooges

(larry curly moe)

STk> (car stooges)
larry

STk> (cdr stooges) ; Calling cdr on a non-empty list gives you another 1list!
(curly moe)

STk> (cadr stooges)
curly

STk> (cdar stooges) ; Why does this break?
*¥** Error:

cdar: bad list: (moe larry curly)
Current eval stack:

0 (cdar stooges)

STk> (define not-a-list (cons 'foo (cons 'bar 'baz))) ; This is not a list.
not-a-list

STk> not-a-list ; What property does this break?

Notice how Scheme knew that we were making lists. Before we had parens and periods which organized
our items. Scheme now recongizes that we're making a list and does away with the periods and some of
the parens.

If you stare a bit at the list rules above, you can notice we used a recursive definition to define lists.
Recursion... on data!

Let's talk about list. List takes a bunch of stuff and makes a list out of them. The stuff can be anything.
Words, numbers, pairs, other lists. list doesn't care.

STk> (list 'foo 'bar' 'baz) ; Lists takes anything and makes a list out of it.
(foo bar baz)

STk> (list 'foo ((lambda (x) (+ x 4)) 8) #f (cons 1 (cons 3 4)) (cons 1 (cons 2
nil)) (list 1 2 3)) ; ANYTHING
(foo 12 #f (1 3 . 4) (1 2) (1 2 3))

STk> (list 'x 'y 'z)
(xy z)

STk> "(x y z) ; Sometimes you can get away with using quote to make literal lists.
Yes, sentences are secretly lists.

(xy z)
Now we can talk about append:

STk> (append '(a b c) '(de f) "(g hi)) ; Append takes in lists and appends them
together.
(abcdefghi)

STk> (append 'foo '(1 2 3)) ; foo is not a list. Stuff will break.
*** Error:

append: argument is not a list: foo
Current eval stack:

0 (append (quote foo) (quote (1 2 3)))

You know that cons makes a pair. You also know that you can make a list out of pairs. You can abuse
cons for your own maniacal purposes.

STk> (cons 'joe stooges) ; Put stuff at the beginning of a list!
(joe larry curly moe)

The following only applies to the STk interpreter.

STk> (append '(1 2 3) 'foo) ; Wait... what?
(123 . foo)

STk> (append '(1 2 3) (cons 4 5)) ; The plot thickens!
(1234.5)

STk> (append stooges 'shemp) ; You should really figure out why this works.
(larry curly moe . shemp)

To summarize:
append takes in lists and outputs a big list.

cons takes in things and makes a pair out of them. However, we know that lists are made of pairs, so we
can throw together a list if we use cons a certain way

list takes in things and makes a list out of those things, regardless of what they are.

lllustrated summery: http://csillustrated.berkeley.edu/PDFs/posters/list-constructors-1-poster.pdf

Let me know if you have any questions.

Andrew

	append vs cons vs list

