
B) Resistance () Symbol	
1) R = (equation)
V(vol	tage) between ends of conductor
I	(amperes)
2) The resistance in a wire depends	on:
a) Resistivity - R metals	to electron flow
b)	() of the wire
c)) of the wire
Resistance of a wire = $RL_{(meters)}$ / A (m	²)
3) Resistance and Temperature	
Metals When temperature	, resistance
Nonmetals - When temperature	
resistance	
Superconductor - conductor with	

Resistance in a Wire

- 1) What is the resistance of .30 m length of copper wire that has a cross-sectional area of 5.0 x 10^{-5} m²?
- a) How could you alter the dimensions of this wire to reduce the resistance?

To reduce the resistance in a wire you could _____

- **2)** If the length of a wire were **halved**, how would that change the resistance of the wire?
- **3)** Which material on your reference table would produce a wire that would **allow current to flow the best**?