Звезды и созвездия. Небесные координаты и звездные карты.

это участок звёздного
неба с характерной наблюдаемой группировкой звёзд, выделенной
для удобства ориентировки и обозначения звёзд.
88 выделенных созвездий считать неизменными.
Невооруженным глазом в безлунную ночь можно видеть над
горизонтом около 3000 звезд.
– созвездия, через
которые <mark>проходит Земля на протяжении года</mark> , образуя условное
кольцо вокруг системы.
Днем небо кажется голубым оттого, что неоднородности
воздушной среды сильнее всего рассеивают голубые лучи
солнечного света.
Звёзды, находящиеся на одинаковом расстоянии, могут
отличаться по видимой яркости (т. е. по блеску).

величина, характеризующая освещённость, которая создаётся
звездой на плоскости, перпендикулярной падающим лучам.

Единицей измерения блеска звезды служит звёздная величина.

Ещё во II веке до н.э. Гиппарх ввел <u>условную шкалу</u> <u>звёздных величин.</u>

Самые яркие – 1 зв. величина.

Более слабые ≈ 2 зв. величина.

Самые слабые – 6 зв. величина (видны в безлунную ночь).

Звезда первой величины в 2,512 раза ярче звезды второй величины.

Звезда второй величины в 2,512 раза ярче звезды третьей величины.

В 1603 году нем. Иоганн Байер предложил другое обозначение звёзд: α (альфа), β (бэта), γ (гамма), δ (дельта), ϵ (эпсилон), ζ (дзета), η (эта), θ (тэта), ι (йота), κ (каппа), λ (лямбда), μ (мю).

Наиболее яркая в созвездии звезда обозначается буквой α (альфа), вторая по яркости - β (бета) и т.д.

Полярная звезда есть а созвездия Малой Медведицы.

Звезды имеют различный цвет. Цвет звезды и спектр (радужная полоса) зависит от температуры.

Спектры звезд разнообразны. Они разделены на классы, обозначаемые латинскими буквами и цифрами: O,B — голубые звезды, A — белые, F — желтоватые, G — желтые, K — оранжевые, M - красные.

Класс	Цвет	Темпе-рат ура, К	Темпе-рат ура, ⁰ С	Спектр	Примеры звезд
О,В					
A					
F					
G					
К					
M					

Если несколько часов наблюдать звездное небо, то можно увидеть, что оно вращается.

Звёздное небо в течение суток со всеми звёздами совершает один оборот.

<u>Суточное движение звёзд</u> — это наблюдаемое кажущееся явление вращения небесного свода — отражает действительное вращение земного шара вокруг своей оси.

Сутки — это период полного оборота Земли вокруг своей оси. За час Земля повернется на 1/24 часть окружности, т.е. на 15°.

Подвижная карта состоит из двух частей — собственно самой карты звездного неба и специального накладного круга. На карте звездного неба показаны наиболее яркие звезды. Именно они и формируют привычные нам фигуры созвездий.

Размеры черных кружков, которыми изображены звезды, соответствуют их блеску: чем звезда ярче, тем он больше.

Полоса в виде точек, проходящая через всю карту — это наш Млечный Путь.

Подвижную карту используют для определения вида звездного неба. Для этого выберите на карте дату наблюдений, а на накладном круге — время. Затем концентрично совместите накладной круг с картой так, чтобы эти риски оказались рядом. В отверстие накладного круга вы увидите картину звездного неба на выбранные вами день и час. Вращая же накладной круг по часовой стрелке вы сможете посмотреть, как в течение времени изменяется вид звездного неба.

Пунктирные линии указывают на карте границы созвездий.

В самом центре карты изображен Северный полюс мира. Рядом с ним — **Полярная звезда.**

Расположенные вокруг Северного полюса окружности — круги склонений. *Третий из них*, если считать от полюса, — *небесный экватор*. Он делит нашу небесную сферу на два полушария: северное и южное.

Овал, несколько смещенный относительно центра карты, — **эклиптика**.

Эта линия построена на небесной сфере движением Солнца, перемещающимся по ней в течение года. На эклиптике легко выделить четыре точки. Первые две, на пересечении с небесным экватором — точки весеннего и осеннего равноденствия. Они обозначаются Т и О соответственно.

Закрепление:

1. Выписать название ярких созвездий, по которым проходит Млечный путь и самые яркие звезды.

Созвездие	Схема созвездия	Самая яркая звезда