
HW 2: Data Plot
In this assignment you will write three different Bash scripts that combined will compare the
sizes of a set of webpages.

You will write three separate Bash scripts:

●​ getcourses will produce a list of URLs found in a given html file
●​ perform-measurement will assess a given set of URLs for the size of file they link to
●​ run-analysis will take a set of URLs and compare the size of files they point to by

plotting them on a graph

Getting Started
Download the starter code by running these commands from Klaatu or the VM. Copy it without
the $

$ wget

https://courses.cs.washington.edu/courses/cse374/20au/homeworks/hw2.tar.gz​
$ tar -xzf hw2.tar.gz

You will now see a directory called hw2 with some helper files in it:

●​ courses-index.html
○​ The data we will be working with for this assignment

●​ popular-small.txt
○​ A small file of example URLs to use to test your perform-measurement script

●​ scatterplot.R
○​ A script we wrote to output a chart to illustrate your measurements

You will turn in getcourses, perform-measurement, and run-analysis

You will need to download your files from klaatu to submit from your own computer. You can use
a program like Filezilla or WinSCP to do this, or you can run this script from your laptop's
terminal (Command Prompt for Windows, Terminal for MacOS)

scp <username>@klaatu.cs.washington.edu:<path-to-your-files> .

-​ Your submission will be automatically graded on Gradescope- the score you receive will
be your final score minus any extra credit or late penalty deduction

-​ You may resubmit to Gradescope as many times as you like until you get the score you
like, the Gradescope output will include details on what the test cases are looking for

-​ Your scripts can always create temporary files, but they must remove them after they're
done with them

-​ Error messages should be printed to stdout and can be any text you find appropriate

Part 1: getcourses - extract URLs
getcourses

Arguments

1.​ name of the output file for results
2.​ name of input html file

Validation

-​ If the user provides fewer than 2 arguments, the script should print an error message
and exit with a return code of 1

-​ If the file provided for input does not exist, the script should print an appropriate error
message and exit with a return code of 1

Functionality

-​ Searches through input html file for URLs that contain
courses.cs.washington.edu/courses/cse

-​ These will by default link to the hub of this course’s pages across multiple
quarters. We specifically want the webpages for the most recent quarter- to get
these simply append “20su/” to the end of each matching line

-​ Add each 20su link to the output file on its own line
-​ Not every course is offered this quarter, so some of these URLs will not be valid-

that is expected
-​ We would also like you to only consider courses that follow the pattern `cseXXX`

where X is a number. This means that you will have to exclude courses like
csem584 and cse599b

-​ If the text file provided as an argument (for the output) exists, the script should simply
overwrite it without any warning

-​ If the script does not report any errors, it should exit with a return code of 0
-​ Don't worry if there are duplicate URLs in the output of getcourses, this is expected
-​ The core idea is that you would have exactly one URL per "block" (title and paragraph

below it) in courses-index.html to be copied to courselist, minus any whose URLs
need to be filtered (i.e. have letter section extensions or are CSEM/CSEP).

Example

./getcourses courselist courses-index.html

Should write content similar to the following into courselist: ​

http://courses.cs.washington.edu/courses/cse120/20su/​
http://courses.cs.washington.edu/courses/cse131/20su/​
http://courses.cs.washington.edu/courses/cse142/20su/​
...

Hints

●​ There are several ways to do this, and different utilities can help. The following hints can
help but you don’t need to use all these hints:

a.​ grep can use string patterns to find the URLs within the file

b.​ sed - stream editor - can do insertion, deletion, search and replace(substitution)
of a file

c.​ read - can let you move through a file one line at a time

●​ Reminder you may create temporary files, but you must remove them before finishing
your process

●​ courses-index.html is taken from https://cs.washington.edu/education/courses/. You
can view this page in a web browser to see what is there, and if you right-click and
'inspect' you can see which html code is associated with which part of the page.

●​ Search for all the lines that contain the string http or https.

●​ Output only the URL part of that line. There are several ways to do this.

a.​ grep -o may be useful. Remember that you can pipe grep commands together
like grep 'pattern1' file | grep 'pattern2', which will search for
pattern2 on the lines which matched pattern1

Part 2: perform-measurement - page size
perform-measurement

Arguments

-​ Takes one argument, a URL
Validations

-​ If the user does not provide any arguments, the script should print an appropriate error
message and exit with status code of 1.

-​ If the user provides an erroneous argument or if downloading the requested page fails
for any other reason, the script should simply print the number "0" (zero). In this case, or
if the page is downloaded successfully, the script should exit with a return code of 0 after
printing the number to standard output.

https://cs.washington.edu/education/courses/

Functionality
-​ Perform-measurement should pull down the webpage given and print to standard out the

size of the corresponding page in bytes
-​ Note we do not want any output from the wget to show up

Example

For example, executing your script with the URL of the Wikipedia page for gay computing
pioneer Alan Turing.

./perform-measurement https://en.wikipedia.org/wiki/Alan_Turing

should output only 544474 to standard output. This may change if the Wikipedia page gets
edited, but not by a lot.

544474

Hints:

●​ The wget program downloads files from the web. Use man wget to see its options.

●​ Using wc is one way to print the number of bytes in a file. You can use wc -c <
test_file

●​ To suppress the output from wget you might want to look at the man pages and try to
find a flag that might help you do this

●​ To suppress the output of a command, try to redirect its output to /dev/null. For
example try ls > /dev/null

●​ Your script may create temporary files if you want.

Part 3: run-analysis

Run the experiment by measuring each web page
run-analysis

Arguments

-​ The output file where results will be stored
-​ The input file to analyse. Should be in the format of the output of “getcourses”, a list of

URLs.

Value

-​ If the user provides fewer than 2 arguments, the script should print an appropriate error
message and exit with status code of 1.

Functionality

-​ For each URL contained within the input file, run-analysis should produce a line in the
output file with the course-number and pagesize separated by a space like so:

course-number1 page-size

course-number2 page-size

course-number3 page-size

...

-​ The course-number is the three-digit course number. You can extract this from the URL
you give to perform-analysis using a similar method to the one you used to parse the
original course listings. You will want only the three digit numerals - not any letter section
extensions. The page-size is the result of perform-measurement.

-​ Because it can take a long time for the experiment to finish, your script should provide
feedback to the user. The feedback should indicate the progress of the experiment.

-​ Before executing perform-measurement on a URL, your script should print the
following message: "Performing byte-size measurement on <URL>".

-​ Once perform-measurement produces a value, if the value is greater than zero,
the script should output the following message: "...successful". If the value is
zero, this means some error has occurred, and the script should output the
following message: "...failure".

-​ When run-analysis finishes, it should exit with a return code of 0.

Example

To debug your script, instead of trying it directly on courses-index.html, we provide you with
a smaller file: popular-small.txt. Here's what it contains:

http://courses.cs.washington.edu/courses/cse332/20su/​
http://courses.cs.washington.edu/i.will.return.an.error​
http://courses.cs.washington.edu/courses/cse333/20su/

Executing your script as follows:

./run-analysis dataout popular-small.txt

Should produce exactly the following output (note -- there is no newline between "on" and the
URL, there is only one after the URL):

(Note 2: This part of the output should be sent to the terminal and not to the dataout file)

Performing byte-size measurement on http://courses.cs.washington.edu/courses/cse332/20su/​
...successful​
Performing byte-size measurement on http://courses.cs.washington.edu/i.will.return.an.error​
...failure​
Performing byte-size measurement on http://courses.cs.washington.edu/courses/cse333/20su/​
...successful

And the content of dataout should be similar to the ones below. These numbers may change a
bit if these classes change their front page.

332 4673

333 17127

Heads-up! On Gradescope, the autograder tests run-analysis with fake, random data. This
allows us to verify that your script is parsing input correctly rather than being dependent on the
state of the web at the time of writing. Thus, the diffs printed by the autograder are not
consistent with the results you will get if you run your script locally.

Part 4: Put all the parts together and generate a plot
Note: There is nothing you need to turn in for this part of the assignment, but you should
run the provided script anyway to check that the plot generated looks right.

It is hard to understand the results just by looking at a list of numbers, so you would like to
produce a graph. More specifically, you would like to produce a scatterplot, where the x-axis will
show the course number and the y-axis will show the size of the index page.

We have provided a script to visualize this called scatterplot.R

Note that this script expects your experimental results to be stored in a file called dataout.

The script should produce a file called scatterplot_out.jpg. If you are using VS Code with
Remote SSH extension, you can just click on the file. Otherwise, you may need to copy it to
your laptop using scp

scp myusername@klaatu.cs.washington.edu:~/path/to/scatterplot_out.jpg .

	HW 2: Data Plot
	Getting Started
	Part 1: getcourses - extract URLs
	Part 2: perform-measurement - page size
	Part 3: run-analysis
	Run the experiment by measuring each web page
	Part 4: Put all the parts together and generate a plot

