

Winter of Code 2.0
GDSC IIIT Kalyani

Project and Organization:
​

Organization : LLVM

​ Project : LLVM FLang

​ Category : Compiler Design

General Information:

Name:​ Harshil Jani

Email ID:​ harshiljani2002@gmail.com

Github Username: https://github.com/Harshil-Jani

Country: ​ India

Primary Language: English

Work:

Differential Patch : https://reviews.llvm.org/D119141

Commit on Github :
https://github.com/llvm/llvm-project/commit/bea53eead1de84a28affc6a
7cbf88f87a258fed4

mailto:harshiljani2002@gmail.com
https://github.com/Harshil-Jani
https://reviews.llvm.org/D119141
https://github.com/llvm/llvm-project/commit/bea53eead1de84a28affc6a7cbf88f87a258fed4
https://github.com/llvm/llvm-project/commit/bea53eead1de84a28affc6a7cbf88f87a258fed4

Exploration Phase

Firstly, Let’s talk about how I came to know about WOC 2.0. In our Linux and Open Source
group, once there was a post regarding this event. And, I love participating in multiple
events. So, I keep things starred. One day, Peacefully, I visited the official site and saw it.
Also in that duration I was exploring some of the GSOC Organisations as well. Suddenly, I
found out that LLVM Organisation was also part of GSOC. Now, There were other
organizations as well. But either they were on Web-Development or Machine Learning.
And, I don’t want to do Web Development so much because it is very much common thing
these days. LLVM was about compilers, but I had no ideas about compilers. But this was
Mid October and contributions were about to start from December. So, I thought the time
would be sufficient for me to work on it. So, I just registered for the event from Devfolio.

Proposal Writing Phase and Community Bonding

This proposal writing phase was in November. Since, I had no idea about how the workflow
would be but I knew how a proposal for GSOC is supposed to be crafted. There has to be a
week by week rough lookup of what we would be implementing. But, I was completely
blank about what I will be doing. So, I approached my Mentor Nimish Mishra. He told me
not to worry about the Weekly Timeline and just mention the project details. He would
understand it and just once consult with the organizers to avoid any sort of
miscommunications. Finally, I made up my mind to the fullest to work for Compilers. Within
a few days with little bit of research, I crafted out a proposal for myself. Here is my
proposal if you wish to glance through it.

Proposal

Now, After this comes the community bonding period. By mail, I connected with my mentor
on Discord to get things started. I got to know about the codebase we would be looking
after and other basic stuff. I told, I am very new to this field and currently learning about
compilers from the basics. Finally, I was being told to move the project at my pace and keep
learning and updating. Eventually Coding Period Started.

https://drive.google.com/file/d/1W8plJOGgnogcsCpKHpPhe6i4x__UZj9Z/view?usp=sharing

Coding Phase

Now, The real thing starts. Once I went back to my mentor and told him that I am learning
compiler theory and along with it I also have an eye on the issues in the llvm repository.
But, I am gaining no sense of how we would be working. He suggested that I should work
for some Semantic Check in OpenMP support for the Flang and provided me a sheet by
OpenMP and asked to choose something to work on.

At my first, I selected the Atomic Construct So, He himself had a patch for this Atomic
Construct. Now, I had to choose something else and I now selected map clause task. But
that was not so beginner friendly, So we had to switch to some basic task in the map clause
itself. Now, Everything was decided and I was told to build the project on my system. And,
This thing almost kept me in my vain. I did every possible try to build the project but in
LLVM we have Ninja build system Generator. This was something that required RAM as it
have to link the Bindings to the system hardware. I was working on 4 GB RAM Laptop. And
Each time I ran ninja build I was facing severe hangs on my Laptop. So, At once, We decided
to switch to the Clang project, But I was unable to build Clang as well. And I have to
postpone my journey. But, I was quite adamant about the compilers now. The efforts I put
in learning it, I didn’t want them to go in vain. I talked to the organizer of the event and
concluded that, I can work with LLVM whenever I will have suitable hardware. It was
expected to be with me by March.

But, In January end, due to more workloads I asked my parents for a new laptop and in a
week or so I got a new one with 16 gigs RAM. So, Now I was all set to work for LLVM thing. I
built the system myself, went again through the sheet of OpenMP and chosen some issue
that suited my learning and informed the mentor about everything I can do now. He then,
asked me to inform again to the organizers regarding the same, And we had started our
work.

Let’s talk about my tasks. I had to work on target enter data and target exit data constructs
and in it, there was a device clause that was supposed to take only the non-negative
integers and not the negative numbers. The exact statement was :

“The device expression must evaluate to a non-negative integer value”

Now, My tasks were to find out where this target enter data and target exit data failed. I
was expected to know what device expressions were and after knowing them in detail from
the OpenMP Specification sheet and the Example sheet, I had to craft a test case where on
passing the negative number inside the device clause of both the constructs it should
compile with no errors returned. Now, This was the thing. There has to be some error on
passing the negative number and that was what I took up as work.

There is a target construct that deals with the device data environments for handling
variables created in data environment. This construct has some directives, target data
which is structured directive or target enter data and target exit data which are
unstructured directives and also standalone. Now use of unstructured directives is
creation and deletion of data on the device at any point within host code. So, in the
specifications sheet as mentioned we have device clause for unstructured data constructs.
As arguments we can provide the device id as a non negative integer.

First I had to write a test case file and run it. Since it was not implemented beforehand, you
will observe No error. Then your task is to write code to flang’s codebase that detects the
number is -ve and throws an error. Finally you add your test case to the test folder and
submit the patch for review. That's the basic workflow.

I somehow, With the help of OpenMP example sheet managed to write a test file. At very
first I was unable to compile the file as I have not exported the flang compiler to my system
path. So, with the help of some guidance I did that and then got file compiled successfully.
Now, Came the real implementation of how to stop things from going negative. Now, For
this we need to have a look at the parse tree of the test file written by me. With the help of
command I dumped the whole parse tree of the FORTRAN code. Now inside the llvm flang
files there is one file named as “parse-tree.h” header file and we can look into this header
file for understanding the different nodes of the parse tree. Now parse-tree.h will allow you
to make a plan, like you can get OpenMPStandaloneConstruct within in you need to
extract OmpClause, which is a std::variant so you may need to extract Device, then look
at definition of Device to extract Scalar, and then Integer, and then the Expr and then check
the sign

We had some brainstorming around std::variant and OpenMPStandaloneConstruct and
figured out which function was working in our code for execution of the test file code that I
wrote. Inserted some print statements within some functions and with some trial and
error, found out the function responsible for working. It was the following function :

void OmpStructureChecker::Enter(const parser::OpenMPConstruct &x)

Now, Inside this function there was a need to write another function dealing with the sign
of the Device expression. So, I created the function named

void CheckDeviceExpr(const parser::OpenMPConstruct &x)

 Initially, I thought the function required taking every node element of the parse tree. But
on further research it turned out that from just OpenMPStandaloneConstruct we can have
access to OmpClause and from there extract the definition of Device clause . I somehow,

On the search from various files I found something known as
llvm::omp::clause::OMPC_device This brought me closer to my implementation.

For the next few days what I was trying was to extract the OMPC_device clause somehow
from the parser path into my function. But, I was unable to get any idea. I again tried a hit
of trial and error and got myself tangled into 3 scenarios.

1.​ if (llvm::omp::Clause::OMPC_device) This won’t work as this is clause and won’t
return any boolean values, So it failed to compile.

2. if (FindClause(llvm::omp::Clause::OMPC_device)) Now here the main thing is that we
are not using void function_name::some_constructor(const our_arg) but instead we use
void function_name (const our_arg) So, FindClause won’t be defined in it. It is pre-defined
for some used constructors such as ::Enter ::ChecksOnOrderedAsStandalone etc. So, this
also failed.

3. std::cout<<llvm::omp::Clause::OMPC_device this however was the worst thing to do. It
is a clause so it won’t work this way. It needs some iterative prints.

Then I had again omitted the whole function and started staring codes again. Suddenly, I
found some functions with valid comments. The first set of functions says // Use when
clause falls under ‘struct OmpClause’ in ‘parse-tree.h’. When we compare this with the
parse Tree of Test File then we have Device Expression under Omp Clause. #define
CHECK_REQ_SCALAR_INT_CLAUSE(X, Y) This Macro is what the Spec sheet says. Our
argument is scalar integer which will have positive values checked already as seen in it’s
function definition. What I did was simply changed

CHECK_SIMPLE_CLAUSE(Device, OMPC_device) with
CHECK_REQ_SCALER_INT(Device,OMPC_device) and the test file throwed me error as
expected. So, Now I felt I made it. I thought this is it. My first thing in LLVM got completed.
Here was the new twist tho. It just accepted the positive numbers. For me it was to allow
non-negatives. So I had problems with passing 0 into this. Then, What I did is created a new
function inside directive calls where passing 0 was allowed as well. And finally made it.

Then I created a patch for this and with the guidance from my mentor, got it uploaded on
Phabricator where It was reviewed for couple of days with some minor changes which
taught me more clean code writing. And then with the final revision it was accepted.

Above and Under, It was an extremely new experience for me to get into compilers. And
Special thanks to Mentor who made things clear whenever I made some blunders or was
gone blank. It is one of my best open source contributions. It added value to my learning. I
loved it.

	Winter of Code 2.0
	Project and Organization:
	Exploration Phase
	Proposal Writing Phase and Community Bonding
	Coding Phase

